Full text loading...
Pyranopyrazole derivatives are important heterocyclic scaffolds known for diverse pharmacological and industrial applications. However, conventional methods for their synthesis often require toxic reagents, harsh reaction conditions, and extended reaction times, creating environmental and operational concerns. Developing green, efficient, and sustainable synthetic methodologies for these derivatives remains a significant need in heterocyclic and medicinal chemistry. We developed an efficient, one-pot multicomponent reaction (MCR) protocol for synthesizing pyranopyrazole derivatives using glutamic acid as a biodegradable, non-toxic, and recyclable catalyst under solvent-free conditions at room temperature. The reaction involves the condensation of ethyl acetoacetate, aromatic or heteroaromatic aldehydes, hydrazine hydrate, and malononitrile, enabling rapid and high-yield synthesis. The methodology provided the desired pyranopyrazole derivatives in excellent yields (91–94%) within short reaction times. We systematically evaluated the effects of catalyst loading, solvent variation, and catalyst recyclability, demonstrating that glutamic acid can be reused for at least five cycles with minimal loss in activity. All synthesized compounds were characterized using NMR and FTIR spectroscopy, confirming the successful formation of target structures. A plausible reaction mechanism was proposed based on literature precedents and experimental observations. This green and efficient protocol offers operational simplicity, high atom economy, a straightforward workup, and an environmentally friendly profile, aligning with green chemistry principles. The methodology provides a practical and sustainable approach for the rapid synthesis of pyranopyrazole derivatives, expanding synthetic strategies for heterocyclic compounds with potential medicinal and material applications.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements