Skip to content
2000
image of Eco-Friendly Microwave-Assisted Synthesis of Fused Pyrimido[4,5-d]Pyrimidine Derivatives via a Catalyst-Free Hantzsch Multicomponent Reaction

Abstract

Sustainable green heterocyclic compounds featuring fused bi-, tri-, and tetracyclic systems containing pyrimidine-barbituric acid rings were synthesized the Hantzsch reaction using a simple and efficient method. The one-pot, three-component reaction involved bis-aldehydes, barbituric acid, and substituted amines, and was carried out under microwave irradiation without the use of a catalyst. The reactions proceeded smoothly, affording the desired products in high yields with straightforward workups. This study emphasizes the importance of green chemistry principles in the synthesis of fused pyrimido[4,5-]pyrimidine systems, highlighting advantages, such as environmental friendliness, operational simplicity, efficiency, and safety.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786396085250807104805
2025-08-18
2025-09-23
Loading full text...

Full text loading...

References

  1. Sustainability master’s degree program. 2025 Available from: https://extension.harvard.edu/blog/green-chemistry-and-the-future-of-sustainability/
  2. Sangeeta Bajpai Iqbal Saman Raza Azad, Tahmeena Khan; Green Chemistry: Making Chemistry Environment-Friendly, Medicinal and Environmental Chemistry: Experimental Advances and Simulations (Part I) (2021) 1: 220. 10.2174/9789814998277121010013
    [Google Scholar]
  3. Eid E.M. Hassaneen H.M.E. Loutfy S.A. Salaheldin T. Preparation of pyrimido[4,5- b][1,6]naphthyridin-4(1H)-one derivatives using a zeolite-nanogold catalyst and their in vitro evaluation as anticancer agent. J. Chem. Res. 2021 45 7-8 679 686 10.1177/1747519820988806
    [Google Scholar]
  4. Hassaneen H. Eid E. Eid H. Farghaly T. Mabkhot Y. Facial regioselective synthesis of novel bioactive spiropyrrolidine/pyrrolizine-oxindole derivatives via a three components reaction as potential antimicrobial agents. Molecules 2017 22 3 357 10.3390/molecules22030357 28245641
    [Google Scholar]
  5. Metwally Heba M. Abdel-Latif Ehab El-Rayyes Ali In silico ADME and molecular docking studies of new thiazolyl-bipyrazole, pyrazolopyridine and pyrano[2,3-d]pyrazolopyridine derivatives as antibacterial agents. Curr. Org. Chem. 2024 28 18 1460 1470 10.2174/0113852728312561240523060417
    [Google Scholar]
  6. Eid E.M. Sustainable green synthesis of pyrimidine derivatives: Review on multicomponent synthesis, catalysts and techniques. Curr. Org. Synth. 2024 21 2 127 139 10.2174/1570179420666230330081211
    [Google Scholar]
  7. Mohammadi Ziarani G. Asadi S. Faramarzi S. Amanlou M. Green synthesis and urease inhibitory activity of spiro-pyrimidinethiones/spiro-pyrimidinones-barbituric acid derivatives. Iran. J. Pharm. Res. 2015 14 4 1105 1114 10.22037/ijpr.2015.1731 26664377
    [Google Scholar]
  8. Liu X.H. Wang Q. Sun Z.H. Wedge D.E. Becnel J.J. Estep A.S. Tan C.X. Weng J.Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti. Pest Manag. Sci. 2017 73 5 953 959 10.1002/ps.4370 27448764
    [Google Scholar]
  9. Hese S.V. Meshram R.J. Kamble R.D. Mogle P.P. Patil K.K. Kamble S.S. Gacche R.N. Dawane B.S. Antidiabetic and allied biochemical roles of new chromeno-pyrano pyrimidine compounds: Synthesis, in vitro and in silico analysis. Med. Chem. Res. 2017 26 4 805 818 10.1007/s00044‑017‑1794‑0
    [Google Scholar]
  10. Ajani O.O. Isaac J.T. Owoeye T.F. Akinsiku A.A. International. J. Biol. Chem. 2015 9 148 177 10.3923/ijbc.2015.148.177
    [Google Scholar]
  11. Jubete G. Puig de la Bellacasa R. Estrada-Tejedor R. Teixidó J. Borrell J.I. Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and biomedical applications. Molecules 2019 24 22 4161 10.3390/molecules24224161 31744155
    [Google Scholar]
  12. Rashad A.E. El Malah T. Shamroukh A.H. Developments of pyrrolo[2,3- d]pyrimidines with pharmaceutical potential. Curr. Org. Chem. 2024 28 16 1244 1264 10.2174/0113852728306820240515054401
    [Google Scholar]
  13. Eid E.M. Sustainable green synthesis and molecular docking study of a bis-fused system incorporating pyrido[2,3-d]pyrimidine using nanocatalyst under microwave condition. Curr. Top Chem. 2024 4 200624231074 10.2174/0126660016263316240610065901
    [Google Scholar]
  14. Wang S. Yuan X.H. Wang S.Q. Zhao W. Chen X.B. Yu B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem. 2021 214 113218 10.1016/j.ejmech.2021.113218 33540357
    [Google Scholar]
  15. Flefel E.E. Salama M.A. El-Shahat M. El-Hashash M.A. El-Farargy A.F. A novel synthesis of some new pyrimidine and thiazolopyrimidine derivatives for anticancer evaluation. Phosphorus Sulfur Silicon Relat. Elem. 2007 182 8 1739 1756 10.1080/10426500701313912
    [Google Scholar]
  16. Lefebvre C-A. Forcellini E. Boutin S. Côté M-F. Synthesis of novel substituted pyrimidine derivatives bearing a sulfamide group and their in vitro cancer growth inhibition activity. Bioorg. Med. Chem. Lett. 2017 27 299 302 10.1016/j.bmcl.2016.11.052 27903409
    [Google Scholar]
  17. Al-Adiwish W.M. Tahir M.I.M. Siti-Noor-Adnalizawati A. Hashim S.F. Ibrahim N. Yaacob W.A. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles. Eur. J. Med. Chem. 2013 64 464 476 10.1016/j.ejmech.2013.04.029 23669354
    [Google Scholar]
  18. Naresh Kumar R. Jitender Dev G. Ravikumar N. Krishna Swaroop D. Debanjan B. Bharath G. Narsaiah B. Nishant Jain S. Gangagni Rao A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett. 2016 26 12 2927 2930 10.1016/j.bmcl.2016.04.038 27130357
    [Google Scholar]
  19. Ismail N.S.M. Ali G.M.E. Ibrahim D.A. Elmetwali A.M. Abou El Ella D.A. Medicinal attributes of pyrazolo[1,5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Future J. Pharm. Sci. 2016 2 2 60 70 10.1016/j.fjps.2016.08.004
    [Google Scholar]
  20. Elzahabi H.S.A. Nossier E.S. Khalifa N.M. Alasfoury R.A. El-Manawaty M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3- d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem. 2018 33 1 546 557 10.1080/14756366.2018.1437729 29482389
    [Google Scholar]
  21. Amr A.G.E. Mohamed A.M. Mohamed S.F. Abdel-Hafez N.A. Hammam A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem. 2006 14 16 5481 5488 10.1016/j.bmc.2006.04.045 16713269
    [Google Scholar]
  22. Hassan A.Y. Husseiny E.M. Synthesis and anticancer evaluation of some novel thiophene, thieno[3,2‐ d]pyrimidine, Thieno[3,2‐ b]pyridine, and thieno[3,2‐ e][1,4]oxazepine derivatives containing benzothiazole moiety. J. Heterocycl. Chem. 2019 56 9 2419 2429 10.1002/jhet.3629
    [Google Scholar]
  23. Abbas S.E.S. George R.F. Samir E.M. Aref M.M.A. Abdel-Aziz H.A. Synthesis and anticancer activity of some pyrido[2,3-d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors. Future Med. Chem. 2019 11 18 2395 2414 10.4155/fmc‑2019‑0050 31544523
    [Google Scholar]
  24. Hassaneen H.M. Saleh F.M. Abdallah T.A. Mohamed M.F. Mohamed Y.S. Awad E.M. Abdelhamid I.A. Synthesis, cytotoxicity, antimicrobial and docking simulation of novel pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[3,4-c] pyrimidine derivatives. Mini Rev. Med. Chem. 2019 19 8 657 670 10.2174/1389557518666181017162459 30332953
    [Google Scholar]
  25. Bekhit A. Fahmy H.T.Y. Rostom S.A.F. Baraka A.M. Design and synthesis of some substituted 1H-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory-antimicrobial Agents. Eur. J. Med. Chem. 2003 38 1 27 36 10.1016/S0223‑5234(02)00009‑0 12593914
    [Google Scholar]
  26. Alam O. Khan S.A. Siddiqui N. Ahsan W. Synthesis and pharmacological evaluation of newer thiazolo [3,2-a] pyrimidines for anti-inflammatory and antinociceptive activity. Med. Chem. Res. 2010 19 9 1245 1258 10.1007/s00044‑009‑9267‑8
    [Google Scholar]
  27. Mokhtari T.S. Amrollahi M.A. Sheikhhosseini E. Sheibani H. Nezhad S.S. Poly(4-vinylpyridine) catalyzed synthesis and characterization of pyrano[2,3-d]pyrimidine derivatives as potent antibacterial agents. Curr. Bioact. Compd. 2018 14 1 54 59 10.2174/1573407213666170104153128
    [Google Scholar]
  28. Panneerselvam T. Mandhadi J.R. Microwave assisted synthesis and antimicrobial evaluation of novel substituted thiosemicarbazide derivatives of pyrimidine. J. Heterocycl. Chem. 2020 57 8 3082 3088 10.1002/jhet.4013
    [Google Scholar]
  29. Behalo M.S. Synthesis of some novel thiazolo[3,2‐a]pyrimidine and pyrimido[2,1‐b][1,3]thiazine derivatives and their antimicrobial evaluation. J. Heterocycl. Chem. 2018 55 6 1391 1397 10.1002/jhet.3174
    [Google Scholar]
  30. Bazgir A. Khanaposhtani M.M. Soorki A.A. One-pot synthesis and antibacterial activities of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-dione derivatives. Bioorg. Med. Chem. Lett. 2008 18 21 5800 5803 10.1016/j.bmcl.2008.09.057 18842404
    [Google Scholar]
  31. Sahi S. Paul S. Synthesis and biological evaluation of quinolines, thiazolo[3,2-a]pyrimidines, thiadiazolo[3,2-a]pyrimidines and triazolo[3,4-b][1,3,4]thiadiazepines as antimicrobial agents. Med. Chem. Res. 2016 25 5 951 969 10.1007/s00044‑016‑1540‑z
    [Google Scholar]
  32. Girasolo M.A. Di Salvo C. Schillaci D. Barone G. Silvestri A. Ruisi G. Synthesis, characterization, and in vitro antimicrobial activity of organotin(IV) complexes with triazolo-pyrimidine ligands containing exocyclic oxygen atoms. J. Organomet. Chem. 2005 690 21-22 4773 4783 10.1016/j.jorganchem.2005.07.072
    [Google Scholar]
  33. Borthakur S.K. Kalita P.K. Borthakur S. Synthesis and antifungal activities of 3,5‐diphenyl‐7‐amino‐[1,3]‐thiazolo[3,2‐a]pyrimidine‐6‐nitrile derivatives. J. Heterocycl. Chem. 2020 57 3 1261 1265 10.1002/jhet.3863
    [Google Scholar]
  34. Satasia S.P. Kalaria P.N. Raval D.K. Catalytic regioselective synthesis of pyrazole based pyrido[2,3-d]pyrimidine-diones and their biological evaluation. Org. Biomol. Chem. 2014 12 11 1751 1758 10.1039/c3ob42132e 24496121
    [Google Scholar]
  35. Bansal M.R.K.B.K. J. Appl. Chem. 2013 2 391 397
    [Google Scholar]
  36. Ziarani M. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and their antimicrobial activities. J. Saudi Chem. Soc. 2015 19 676 681 10.1016/j.jscs.2014.06.007
    [Google Scholar]
  37. Reheim M.A.M.A. Hafiz I.S.A. Elian M.A. Synthesis and antimicrobial evaluation of some novel pyrimidine, pyrazole, chromene and tetrahydrobenzo[b]thiophene derivatives bearing pyrimidinthione moiety. Curr. Org. Synth. 2020 17 7 548 557 10.2174/1570179417666200628021125 32600236
    [Google Scholar]
  38. Zhu Y. Wang Z. Zhang J. Yu J. Yan L. Li Y. Chen L. Yan X. An organocatalytic synthesis of chiral pyrano[2,3‐ d]pyrimidines through [3+3] annulation of 1,3‐dimethyl‐barbituric acid with 2‐(1‐Alkynyl)‐2‐alken‐1‐ones. Eur. J. Org. Chem. 2018 2018 3 347 354 10.1002/ejoc.201701581
    [Google Scholar]
  39. Moskvin A.V. Reznikova N.R. Ivin B.A. Condensation of hydroxypyrimidines with carbonyl compounds: I. barbituric acids. Russ. J. Org. Chem. 2002 38 4 463 474 10.1023/A:1016574401192
    [Google Scholar]
  40. Moussier N. Bruche L. Viani F. Zanda M. Fluorinated barbituric acid derivatives: Synthesis and bio-activity. Curr. Org. Chem. 2003 7 11 1071 1080 10.2174/1385272033486567
    [Google Scholar]
  41. Chebanov V. Muravyova E. Shishkina S. Musatov V. Knyazeva I. Shishkin O. Desenko S. Chemoselectivity of multicomponent condensations of barbituric acids, 5-aminopyrazoles, and aldehydes. Synthesis 2009 2009 8 1375 1385 10.1055/s‑0028‑1088024
    [Google Scholar]
  42. Dewan S.K. Singh R. One pot synthesis of barbiturates on reaction of barbituric acid with aldehydes under microwave irradiation using a variety of catalysts. Synth. Commun. 2003 33 17 3081 3084 10.1081/SCC‑120022485
    [Google Scholar]
  43. Bhaskaruni S.V.H.S. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem. 2020 13 1 1142 1178 10.1016/j.arabjc.2017.09.016
    [Google Scholar]
  44. Saha M. Luireingam T.S. Merry T. Pal A.K. Saha M. Luireingam T.S. Merry T. Pal A.K. Catalyst-free, knoevenagel-michael addition reaction of dimedone under microwave irradiation: An efficient one-pot synthesis of polyhydroquinoline derivatives. J. Heterocycl. Chem. 2013 50 4 941 944 10.1002/jhet.1541
    [Google Scholar]
  45. Majumder A. Gupta R. Jain A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev. 2013 6 2 151 182 10.1080/17518253.2012.733032
    [Google Scholar]
  46. Sanad S. Kassab R. Abdelhamid I. Elwahy A. Microwave assisted multi-component synthesis of novel bis(1,4-dihydropyridines) based arenes or heteroarenes. Heterocycles 2016 92 910 924 10.3987/COM‑16‑13441
    [Google Scholar]
  47. Eid E.M. Hassaneen H.M.E. Elwahy A.H.M. Abdelhamid I.A. Hantzsch-like synthesis of novel bis(hexahydroacridine-1,8-diones), bis(tetrahydrodipyrazolo[3,4- b:4′,3′- e]pyridines), and bis(pyrimido[4,5- b]quinolines) incorporating thieno[2,3- b]thiophenes. J. Chem. Res. 2020 44 11-12 653 659 10.1177/1747519820917886
    [Google Scholar]
  48. Eid E.M. Hassaneen H.M.E. Abdelhamid I.A. Elwahy A.H.M. Facile one‐pot, three‐component synthesis of novel bis(heterocycles) incorporating thieno[2,3‐ b]thiophenes via Michael addition reaction. J. Heterocycl. Chem. 2020 57 5 2243 2255 10.1002/jhet.3945
    [Google Scholar]
  49. Gao F. Bai R. Ferlin F. Vaccaro L. Li M. Gu Y. Replacement strategies for non-green dipolar aprotic solvents. Green Chem. 2020 22 19 6240 6257 10.1039/D0GC02149K
    [Google Scholar]
  50. Bojarski J.T. Mokrosz J.L. Bartoń H.J. Paluchowska M.H. Recent progress in barbituric acid chemistry. Adv. Heterocycl. Chem. 1985 38 229 297 10.1016/S0065‑2725(08)60921‑6
    [Google Scholar]
  51. Bm U. A solvent free green protocol for synthesis of 5-arylidine barbituric acid derivatives. Org Chem. Ind. J. 2016 12 3 102
    [Google Scholar]
/content/journals/loc/10.2174/0115701786396085250807104805
Loading
/content/journals/loc/10.2174/0115701786396085250807104805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test