Skip to content
2000
image of Humic Acid as a Recyclable Green Catalyst for the Synthesis of Imines from Carbonyl Compounds and Primary Amines at Room Temperature

Abstract

Imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. The development of green and sustainable synthetic methods is always a high priority of modern synthetic chemistry. Catalysts with environmental sustainability and high catalytic performance are of great research interest for sustainable catalysis. Humic acid is a class of natural and refractory high molecular weight organic matter. The chemical structure of humic acid contains a large number of functional groups such as carboxyls, hydroxyls, and aromatic rings, indicating that it comprises quinones, phenols, sugar, polypeptides, and other compounds. Humic acid is a green, biodegradable, commercially available, inexpensive and homogeneous recyclable organocatalyst. In this article, humic acid was used to catalyze the condensation of aldehydes or ketones with primary amines to the corresponding imines. In order to optimize the reaction conditions, the condensation reaction of benzaldehyde and aniline was selected as a model reaction. The effects of catalysts, catalyst loading and solvents on the formation of imines were systematically investigated. Under the optimized conditions, the methodology was successfully applied for the synthesis of a series of imines at room temperature in high yields and can be easily scaled up to the gram scale. The results showed that the catalyst humic acid exhibited excellent activity in the synthesis of imines from carbonyl compounds and primary amines. Importantly, the catalyst humic acid is effectively recycled and reused eight times with no significant decrease in the yield of the product. Our strategy provides a sustainable, efficient route for the green synthesis and large-scale production of imines at room temperature.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786395176250828052806
2025-10-02
2025-12-10
Loading full text...

Full text loading...

References

  1. Dong X. Zhang F. Huang F. Lang X. Appl. Catal. B 2022 318 121875 10.1016/j.apcatb.2022.121875
    [Google Scholar]
  2. Shang R. Zhang Q. Lin P. Gu B. Tang Q. Cao Q. Fang W. Appl. Catal. B 2022 319 121904 10.1016/j.apcatb.2022.121904
    [Google Scholar]
  3. Chen C. Fan R. Han M. Zhu X. Zhang Y. Zhang H. Zhao H. Wang G. Appl. Catal. B 2021 280 119448 10.1016/j.apcatb.2020.119448
    [Google Scholar]
  4. Bayrak H. Demirbas A. Karaoglu S.A. Demirbas N. Eur. J. Med. Chem. 2009 44 3 1057 1066 10.1016/j.ejmech.2008.06.019 18676062
    [Google Scholar]
  5. Gawronski J. Wascinska N. Gajewy. J. Chem. Rev. 2008 108 12 5227 5252 10.1021/cr800421c 18850749
    [Google Scholar]
  6. Kobayashi S. Mori Y. Fossey J.S. Salter M.M. Chem. Rev. 2011 111 4 2626 2704 10.1021/cr100204f 21405021
    [Google Scholar]
  7. And S.K. Ishitani H. Chem. Rev. 1999 99 5 1069 1094 10.1021/cr980414z 11749440
    [Google Scholar]
  8. Nielsen M. Worgull D. Zweifel T. Gschwend B. Bertelsen S. Jørgensen K.A. Chem. Commun. 2011 47 2 632 649 10.1039/C0CC02417A 20953517
    [Google Scholar]
  9. Marques C.S. Burke A.J. ChemCatChem 2011 3 4 635 645 10.1002/cctc.201000369
    [Google Scholar]
  10. Uematsu N. Fujii A. Hashiguchi S. Ikariya T. Noyori R. J. Am. Chem. Soc. 1996 118 20 4916 4917 10.1021/ja960364k
    [Google Scholar]
  11. Nieto S. Dragna J.M. Anslyn E.V. Chemistry 2010 16 1 227 232 10.1002/chem.200902650 19946914
    [Google Scholar]
  12. Dhakshinamoorthy A. Alvaro M. Garcia H. ChemCatChem 2010 2 11 1438 1443 10.1002/cctc.201000175
    [Google Scholar]
  13. Nakajima R. Ogino T. Yokoshima S. Fukuyama T. J. Am. Chem. Soc. 2010 132 4 1236 1237 10.1021/ja9103233 20055392
    [Google Scholar]
  14. Cui X. Li W. Junge K. Fei Z. Beller M. Dyson P.J. Angew. Chem. Int. Ed. 2020 59 19 7501 7507 10.1002/anie.201915526 32049401
    [Google Scholar]
  15. Akhmetova V.R. Khabibullina G.R. Rakhimova E.B. Vagapov R.A. Khairullina R.R. Niatshina Z.T. Murzakova N.N. Mol. Divers. 2010 14 3 463 471 10.1007/s11030‑010‑9248‑3 20364369
    [Google Scholar]
  16. Xie J.H. Zhu S.F. Zhou Q.L. Chem. Rev. 2011 111 3 1713 1760 10.1021/cr100218m 21166392
    [Google Scholar]
  17. Kondo Y. Morimoto H. Ohshima T. Synlett 2023 35 4 379 393 10.1055/a‑2131‑3448
    [Google Scholar]
  18. Zhou M.J. Liu G. Xu C. Huang Z. Synthesis 2023 55 4 547 564 10.1055/s‑0042‑1753053
    [Google Scholar]
  19. Tang M. Chen W. Liu Z. Pang J. Li C. Liu S. Tan R. Catal. Lett. 2024 154 3 1296 1308 10.1007/s10562‑023‑04386‑z
    [Google Scholar]
  20. Liu D. Zhang C. Han N. Du M. Zhang X. Zhao P. Yang P. Youji Huaxue 2018 38 6 1350 1363 sioc-journal.cn/10.6023/cjoc201801017 10.6023/cjoc201801017
    [Google Scholar]
  21. Wang H. Huang L. Youji Huaxue 2019 39 4 883 902 sioc-journal.cn/10.6023/cjoc201808039 10.6023/cjoc201808039
    [Google Scholar]
  22. He C. Dai W. Zhao Y. Liu J.J. Dalton Trans. 2024 54 1 15 37 10.1039/D4DT02350A 39584571
    [Google Scholar]
  23. Ramanathan M. Moussa. Z. Org. Chem. Front. 2024 12 1 256 327 10.1039/D4QO01776E
    [Google Scholar]
  24. Tibbetts J.D. Carbery D.R. Emanuelsson E.A.C. ACS Sustain. Chem.& Eng. 2017 5 11 9826 9835 10.1021/acssuschemeng.7b01754
    [Google Scholar]
  25. Paul H. Das D. Ariyan S.K. Pradhan S. Chatterjee I. Chem. Commun. 2024 60 89 13016 13019 10.1039/D4CC03897E 39423333
    [Google Scholar]
  26. Liu M.S. Shu W. ACS Catal. 2020 10 21 12960 12966 10.1021/acscatal.0c04070
    [Google Scholar]
  27. Verrier C. Carret S. Poisson J.F. ACS Sustain. Chem.& Eng. 2018 6 7 8563 8569 10.1021/acssuschemeng.8b00864
    [Google Scholar]
  28. Xu Z. Kovács E. ACS Org. Inorg Au 2024 4 5 471 484 10.1021/acsorginorgau.4c00025 39371318
    [Google Scholar]
  29. Largeron M. Eur. J. Org. Chem. 2013 2013 24 5225 5235 10.1002/ejoc.201300315
    [Google Scholar]
  30. Lee S. Lee W.L. Yun. J. Adv. Synth. Catal. 2015 357 10 2219 2222 10.1002/adsc.201500295
    [Google Scholar]
  31. Zhai Y. Chu M. Xie C. Huang F. Zhang C. Zhang Y. Liu H. Wang H. Gao Y. ACS Sustain. Chem.& Eng. 2018 6 12 17410 17418 10.1021/acssuschemeng.8b05217
    [Google Scholar]
  32. Yu C. Zhou Y. Zhou Y. Liu Z. Liang M. Huang L. Zhao J. ACS Appl. Mater. Interfaces 2024 16 18 acsami.4c00894 10.1021/acsami.4c00894 38684661
    [Google Scholar]
  33. Chai H. Yu K. Liu B. Tan W. Zhang G. Organometallics 2020 39 1 217 226 10.1021/acs.organomet.9b00769
    [Google Scholar]
  34. Egorov I.N. Santra S. Zyryanov G.V. Majee A. Hajra A. Chupakhin O.N. Adv. Synth. Catal. 2022 364 13 2092 2112 10.1002/adsc.202200155
    [Google Scholar]
  35. Patil R.D. Adimurthy S. Adv. Synth. Catal. 2011 353 10 1695 1700 10.1002/adsc.201100100
    [Google Scholar]
  36. Lian C. Zhang C. Zhao Y. Wang H. Li X. Huang L. Appl. Organomet. Chem. 2022 36 3 e6568 10.1002/aoc.6568
    [Google Scholar]
  37. Chakraborty S. Milstein D. ACS Catal. 2017 7 6 3968 3972 10.1021/acscatal.7b00906
    [Google Scholar]
  38. Li H. Al-Dakhil A. Lupp D. Gholap S.S. Lai Z. Liang L.C. Huang K.W. Org. Lett. 2018 20 20 6430 6435 10.1021/acs.orglett.8b02744 30272984
    [Google Scholar]
  39. Ye L. Li Z. ChemCatChem 2014 6 9 2540 2543 10.1002/cctc.201402360
    [Google Scholar]
  40. Kpoezoun A. Baba G. Guillemin J.C. Org. Biomol. Chem. 2024 22 42 8505 8510 10.1039/D4OB01315H 39351685
    [Google Scholar]
  41. Jin H.G. Zhao P.C. Qian Y. Xiao J.D. Chao Z.S. Jiang H.L. Chem. Soc. Rev. 2024 53 18 9378 9418 10.1039/D4CS00095A 39163028
    [Google Scholar]
  42. Crujeiras P. Vázquez-Carballo I. Sousa-Pedrares A. Dalton Trans. 2025 54 7 2819 2832 10.1039/D4DT03378G 39812131
    [Google Scholar]
  43. Nowak P. Sikorski A. New J. Chem. 2025 49 14 5940 5949 10.1039/D4NJ02791D
    [Google Scholar]
  44. Jia J. Xu Q. Fan H. Lv Y. Li D. Org. Chem. Front. 2025 12 3 960 974 10.1039/D4QO02078B
    [Google Scholar]
  45. Zeng B. Wang Y. Huang F. Xiong K. Zhang K. Lang X. Catal. Sci. Technol. 2024 14 10 2838 2847 10.1039/D4CY00312H
    [Google Scholar]
  46. Wang S. Chen J. Chang Y. Wang S. Meng C. Long Z. Chen G. J. Mater. Chem. A Mater. Energy Sustain. 2024 12 23 14159 14166 10.1039/D4TA01548G
    [Google Scholar]
  47. Gao Y. Zhu Y. Zhao M. Rebek J. Yu Y. J. Am. Chem. Soc. 2025 147 15 12989 12995 10.1021/jacs.5c02779 40177734
    [Google Scholar]
  48. Jing Z. Liu S. Zhang X. Hong Y. Ma P. Wang J. Niu J. Inorg. Chem. 2025 64 15 7832 7840 10.1021/acs.inorgchem.5c01138 40196981
    [Google Scholar]
  49. Khangkhachit W. Shirai S. Iwasaki G. Asano Y. ACS Omega 2025 10 2 2212 2221 10.1021/acsomega.4c09160 39866613
    [Google Scholar]
  50. Zou H. Jin Y. Chen L. Chen J. ACS Catal. 2025 15 3 2017 2032 10.1021/acscatal.4c07371
    [Google Scholar]
  51. Chen Z. Yang S. Yang J. Zhang B. Jiang H. Gao R. Wang T. Zhang Q. Zhang H. ACS Catal. 2024 14 24 18256 18267 10.1021/acscatal.4c05569
    [Google Scholar]
  52. Yadav S. Gupta R. Dalton Trans. 2025 54 14 5675 5684 10.1039/D4DT03201B 39937125
    [Google Scholar]
  53. Lee J.H. Gupta S. Jeong W. Rhee Y.H. Park J. Angew. Chem. Int. Ed. 2012 51 43 10851 10855 10.1002/anie.201204483 23023826
    [Google Scholar]
  54. Moutaouakil M. Moutaouakil S. Roby O. Tighadouini S. Saddik R. ChemistrySelect 2024 9 21 e202401098 10.1002/slct.202401098
    [Google Scholar]
  55. Anand A. Regina A. Jalwal S. Prodhan S. Sil D. Paranjothy M. Chakraborty S. Dalton Trans. 2025 54 16 6432 6442 10.1039/D4DT03460K 40163090
    [Google Scholar]
  56. Singh A. Das B. Ray S. Mater. Adv. 2025 6 5 1667 1678 10.1039/D4MA00990H
    [Google Scholar]
  57. Huang H. Yang Q. Yao K. Geng W. Jing X. Dalton Trans. 2025 54 15 6015 6019 10.1039/D5DT00120J 40126519
    [Google Scholar]
  58. Zhu S. Zhao H. Wang Y. Li Z. Zhang S. Zeng B. Zhou X. Gu X.K. Lang X. Sustain. Energy Fuels 2025 9 2 527 537 10.1039/D4SE01634C
    [Google Scholar]
  59. Mahato J. Bera P.S. Saha T.K. Org. Biomol. Chem. 2024 22 22 4528 4535 10.1039/D4OB00351A 38752768
    [Google Scholar]
  60. Xu J. Luo F. Li J. Yang K. Li H. ChemistrySelect 2019 4 35 10401 10407 10.1002/slct.201902475
    [Google Scholar]
  61. Sacchelli B.A.L. Onguene S.M.P. Almeida R.S.M. Antunes A.M.M. Nesterov D.S. Andrade L.H. Alegria E.C.B.A. Prechtl M.H.G. Catal. Sci. Technol. 2024 14 22 6503 6512 10.1039/D4CY00760C
    [Google Scholar]
  62. Souza G.F.P. Zuben T.W. ACS Sustain. Chem.& Eng. 2017 5 9 8439 8446 10.1021/acssuschemeng.7b02353
    [Google Scholar]
  63. Purohit M. Kalla S. Jangir R. ChemistrySelect 2023 8 20 e202300386 10.1002/slct.202300386
    [Google Scholar]
  64. Fertig R. Irrgang T. Freitag F. Zander J. Kempe R. ACS Catal. 2018 8 9 8525 8530 10.1021/acscatal.8b02530
    [Google Scholar]
  65. Tomar R. Ebitani K. Chandra R. ChemistrySelect 2019 4 12 3577 3581 10.1002/slct.201900750
    [Google Scholar]
  66. Ganji N. Karimi B. Vali H. ACS Appl. Nano Mater. 2024 7 3 2650 2661 10.1021/acsanm.3c04780
    [Google Scholar]
  67. Lu X. Zhang F. Yan F. Liu Q. Zhao Y. Du M. Zhang L. Li X. Zhao Z. Liu H. Chem. Commun. 2025 61 34 6316 6319 10.1039/D5CC00498E 40166922
    [Google Scholar]
  68. Li S. Yahaya S. Bojanowski J. Ragazzon G. Dydio P. Chem. Sci. 2025 16 9 4167 4174 10.1039/D4SC06806H 39911345
    [Google Scholar]
  69. Mukhi P. Roy S. ChemistrySelect 2020 5 3 1000 1006 10.1002/slct.201903671
    [Google Scholar]
  70. Morales S. Guijarro F.G. García Ruano J.L. Cid M.B. J. Am. Chem. Soc. 2014 136 3 1082 1089 10.1021/ja4111418 24359453
    [Google Scholar]
  71. Reeves J.T. Visco M.D. Marsini M.A. Grinberg N. Busacca C.A. Mattson A.E. Senanayake C.H. Org. Lett. 2015 17 10 2442 2445 10.1021/acs.orglett.5b00949 25906082
    [Google Scholar]
  72. Acharya S.S. Parida B.B. ChemistrySelect 2024 9 12 e202305233 10.1002/slct.202305233
    [Google Scholar]
  73. Datta K. Mitra B. Ghosh P. ChemistrySelect 2023 8 29 e202301255 10.1002/slct.202301255
    [Google Scholar]
  74. Nandi M. Mitra B. Ghosh P. Res. Chem. Intermed. 2024 50 4 1757 1775 10.1007/s11164‑024‑05237‑1
    [Google Scholar]
  75. Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons 1982
    [Google Scholar]
  76. Wei S. Xie Z. Zhao Y. Wang Q. Wang Y. Zhao J. Yin K. Zhu Z. Liu Y. Wu M. Li Z. Pedosphere 2025 35 1 33 41 10.1016/j.pedsph.2024.11.007
    [Google Scholar]
  77. Fu Y. Fu T. Duan C. Chi J. Wang H. Synth. Commun. 2023 53 14 1164 1172 10.1080/00397911.2023.2213362
    [Google Scholar]
  78. Xi M. Duan C. Chi J. Fu T. Su X. Wang H. Youji Huaxue 2023 43 9 3312 3318 10.6023/cjoc202301024
    [Google Scholar]
  79. Wei L. Wang Y. Huang Q. Wang H. Lett. Org. Chem. 2025 22 4 300 307 10.2174/0115701786318539240822112936
    [Google Scholar]
  80. Mohana A.A. Roddick F. Periasamy S. Gao L. Pramanik B.K. Green Chem. 2025 27 16 4222 4234 10.1039/D5GC00515A
    [Google Scholar]
  81. Friedrich H. Siddiq K. Arafah N. Kulanda R. Aguilar-Sanchez L.G. Jones C.R. Org. Biomol. Chem. 2025 23 19 4648 4653 10.1039/D5OB00273G 40245022
    [Google Scholar]
  82. Chen T. Zhao C. Lai T. Zhao. J. Polym. Chem. 2025 16 7 903 912 10.1039/D4PY01422G
    [Google Scholar]
  83. Delolo F.G. Almeida L.D. Vieira G.M. dos Santos E.N. Gusevskaya E.V. Green Chem. 2025 27 18 4816 4866 10.1039/D5GC00451A
    [Google Scholar]
  84. Song T. Liu H. Zou H. Wang C. Shu S. Dai H. Duan L. Angew. Chem. Int. Ed. 2024 63 50 e202411228 10.1002/anie.202411228 39292221
    [Google Scholar]
  85. Sittel S. Neuner J. Grenz J.M. Förster C. Naumann R. Heinze K. Adv. Synth. Catal. 2025 367 3 e202500075 10.1002/adsc.202500075
    [Google Scholar]
  86. Liu Y.Q. Yang R. Li H. Loh T.P. Lu M.Z. Org. Lett. 2025 27 16 4140 4145 10.1021/acs.orglett.5c00709 40227868
    [Google Scholar]
  87. Vardhan H. Shin B. Wang X. Jiang S.Y. Alazmi A. Zhang R. Han Y. Wu X. Verduzco R. Chem. Mater. 2025 37 6 2258 2267 10.1021/acs.chemmater.4c03398
    [Google Scholar]
/content/journals/loc/10.2174/0115701786395176250828052806
Loading
/content/journals/loc/10.2174/0115701786395176250828052806
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: room temperature ; primary amines ; ketones ; Imines ; aldehydes ; humic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test