Skip to content
2000
image of Naphthol-based Optical Chemosensor for the Detection of Lead Ions in Water

Abstract

Lead ions are among the most harmful and widely studied toxins responsible for a wide range of health and environmental risks. The objective of this study was to synthesize a naphthol based optical chemosensor for the detection of lead ions. A naphthol based organic probe 1-(acetylamino(2-chlorophenyl)methyl)-2-naphthol (NCC) has been synthesized by the condensation reaction of -naphthol with -chlorobenzaldehyde in the presence of chlorosulfonic acid and characterized using various spectroscopic techniques. The probe NCC was subjected to evaluate its potential for the recognition of different mono, di, and trivalent cations in the acetonitrilic medium using UV-Visible spectroscopy. The chemosensing behaviour of NCC was analyzed under various pH, temperature, and time and also in the presence of interfering ions. The results showed an increment in the λ at 230 nm with a small blue shift of 2 nm after the addition of Pb2+ ions to the solution of NCC. Under the optimum conditions, the detection limit and association constant of NCC for Pb2+ ions were calculated to be 28.0 ppm and 8.1103 M-1 using titration studies. The addition of NaEDTA quenches the absorption intensity of the NCC-Pb2+ complex, indicating that NCC serves as a reversible chemosensor for Pb2+ ions. The changes in the UV-visible spectrum of NCC in the presence of Pb2+ ions suggests the interaction of NCC with Pb2+ ions and the formation of a complex, which was found stable for a long period of time in the tested temperature range (5-45 °C). The skeleton reported in this work showed excellent suitability for the detection and determination of Pb2+ with minimal interference from other common cations and anions.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786394217250727154846
2025-08-04
2025-11-07
Loading full text...

Full text loading...

References

  1. Kishor R. Purchase D. Saratale G.D. Saratale R.G. Ferreira L.F.R. Bilal M. Chandra R. Bharagava R.N. J. Environ. Chem. Eng. 2021 9 2 105012 10.1016/j.jece.2020.105012
    [Google Scholar]
  2. Malik L.A. Bashir A. Qureashi A. Pandith A.H. Environ. Chem. Lett. 2019 17 4 1495 1521 10.1007/s10311‑019‑00891‑z
    [Google Scholar]
  3. Kumar V. Dwivedi S.K. Oh S. J. Water Process Eng. 2022 45 102518 10.1016/j.jwpe.2021.102518
    [Google Scholar]
  4. Al-Saidi H.M. Chem. Zvesti 2023 77 9 4807 4822 10.1007/s11696‑023‑02836‑x
    [Google Scholar]
  5. Aziz K.H.H. Mustafa F.S. Omer K.M. Hama S. Hamarawf R.F. Rahman K.O. RSC Advances 2023 13 17595 17610 10.1039/D3RA00723E 37312989
    [Google Scholar]
  6. Krithiga T. Sathish S. Renita A.A. Prabu D. Lokesh S. Geetha R. Namasivayam S.K.R. Sillanpaa M. Sci. Total Environ. 2022 831 154808 10.1016/j.scitotenv.2022.154808 35341870
    [Google Scholar]
  7. Ayele A. Haile S. Alemu D. Kamaraj M. ScientificWorldJournal 2021 2021 1 10 10.1155/2021/5588111 33927581
    [Google Scholar]
  8. Al-Saidi H.M. Khan S. Curr. Anal. Chem. 2025 21 1 5 14 10.2174/0115734110294079240424103357
    [Google Scholar]
  9. Zamora-Ledezma C. Negrete-Bolagay D. Figueroa F. Zamora-Ledezma E. Ni M. Alexis F. Guerrero V.H. Environ. Technol Innov. 2021 22 101504 10.1016/j.eti.2021.101504
    [Google Scholar]
  10. Fu Z. Xi S. Toxicol. Mech. Methods 2020 30 3 167 176 10.1080/15376516.2019.1701594 31818169
    [Google Scholar]
  11. Witkowska D. Słowik J. Chilicka K. Molecules 2021 26 19 6060 10.3390/molecules26196060 34641604
    [Google Scholar]
  12. Jomova K. Makova M. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Rhodes C.J. Valko M. Chem. Biol. Interact. 2022 367 110173 10.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  13. Sall M.L. Diaw A.K.D. Gningue-Sall D. Efremova Aaron S. Aaron J. J. Environ. Sci. Pollut. Res. Int. 2020 27 24 29927 29942 10.1007/s11356‑020‑09354‑3 32506411
    [Google Scholar]
  14. Karuppaiah A. Selvaraj D. Sellappan M. Nagarajan A. Babu D. Rahman H. Madheswaran T. Bose B. Natrajan T. Curr. Pharm. Des. 2023 29 4 239 245 10.2174/1381612829666230109111635 36624648
    [Google Scholar]
  15. Mayans L. Am. Fam. Physician 2019 100 1 24 30 31259498
    [Google Scholar]
  16. Zuo S. Wang Y. Wan J. Ma Y. Yan Z. Tang M. Crit. Rev. Environ. Sci. Technol. 2025 55 3 169 189 10.1080/10643389.2024.2393511
    [Google Scholar]
  17. Kaur I. Behl T. Aleya L. Rahman M.H. Kumar A. Arora S. Akter R. Environ. Sci. Pollut. Res. Int. 2021 28 8 8989 9001 10.1007/s11356‑020‑12255‑0 33447979
    [Google Scholar]
  18. Lari A. Esmaeili N. Ghafari H. Anal. Methods Environ. Chem. J. 2021 4 2 72 85 10.24200/amecj.v4.i02.144
    [Google Scholar]
  19. Xia W.S. Schmehl R.H. Li C.J. Mague J.T. Luo C.P. Guldi D.M. J. Phys. Chem. B 2002 106 4 833 843 10.1021/jp013274x
    [Google Scholar]
  20. Collin M.S. Venkatraman S.K. Vijayakumar N. Kanimozhi V. Arbaaz S.M. Stacey R.G.S. Anusha J. Choudhary R. Lvov V. Tovar G.I. Senatov F. Koppala S. Swamiappan S. J. Hazard Mater. Adv. 2022 7 100094 10.1016/j.hazadv.2022.100094
    [Google Scholar]
  21. Sharma D. Teli G. Gupta K. Bansal G. Gupta G.D. Chawla P.A. Curr. Nanomater. 2022 7 110 138 10.2174/2405461507666220131104843
    [Google Scholar]
  22. Mohammed G.I. Nassar S. Farghaly T.A. Results Chem. 2025 15 102174 10.1016/j.rechem.2025.102174
    [Google Scholar]
  23. Bhasin C.P. Pathan A. Patel R.V. Curr. Nanomater. 2024 9 1 16 40 10.2174/2405461508666230221143138
    [Google Scholar]
  24. Ahmed I.M. Helal A.A. El Aziz N.A. Gamal R. Shaker N.O. Helal A.A. Arab. J. Chem. 2019 12 8 2540 2547 10.1016/j.arabjc.2015.03.012
    [Google Scholar]
  25. Anbu Durai W. Ramu A. Dhakshinamoorthy A. J. Fluoresc. 2021 31 2 465 474 10.1007/s10895‑020‑02673‑1 33417109
    [Google Scholar]
  26. Akhtar S. Khan Z.I. Ahmad K. Nadeem M. Ejaz A. Hussain M.I. Ashraf M.A. Agric. Water Manage. 2022 271 107743 10.1016/j.agwat.2022.107743
    [Google Scholar]
  27. David C.I. Prabakaran G. Narmatha G. Luther J.M. Manigandan S. Muthusamy A. Kayalvizhi R. Kannan V.R. Kumar R.S. Nandhakumar R. J. Food Compos. Anal. 2024 133 106448 10.1016/j.jfca.2024.106448
    [Google Scholar]
  28. Zhuang Y.T. Chen S. Jiang R. Yu Y.L. Wang J.H. Anal. Chem. 2019 91 8 5346 5353 10.1021/acs.analchem.9b00339 30912435
    [Google Scholar]
  29. Abbas R.F. Waheb A.A. Current Cosmetic Science 2022 1 2 040422203093 10.2174/2666779701666220404181950
    [Google Scholar]
  30. Nithyanandam R. Orvy M.J. Rajesh R. Rajendran R. SudhiMithran. J. Curr. Anal. Chem. 2024 20 3 147 161 10.2174/0115734110286256240116061511
    [Google Scholar]
  31. Khan S. Muhammad M. Algethami J.S. Al-Saidi H.M. Almahri A. Hassanian A.A. J. Fluoresc. 2022 32 5 1889 1898 10.1007/s10895‑022‑02990‑7 35749029
    [Google Scholar]
  32. Rajamohan R. Ruby Raj M. Selvamani T. Murali Krishnan M. Govindasamy C. Murugan M. Rok Lee Y. J. Mol. Liq. 2024 408 125376 10.1016/j.molliq.2024.125376
    [Google Scholar]
  33. Zhang H. Song J. Wang S. Song Q. Guo H. Li Z. Dyes Pigments 2023 216 111380 10.1016/j.dyepig.2023.111380
    [Google Scholar]
  34. Çubuk S. Salah N. Nallbani B.G. Yetimoğlu E.K. Kahraman M.V. J. Fluoresc. 2024 ••• 1 10
    [Google Scholar]
  35. Mayer M. Baeumner A. J. Chem. Rev. 2019 119 13 7996 8027 10.1021/acs.chemrev.8b00719 31070892
    [Google Scholar]
  36. Giannetti A. Bocková M. Chemosensors 2020 8 2 33 10.3390/chemosensors8020033
    [Google Scholar]
  37. Koralli P. Mouzakis D.E. Chemosensors 2021 9 5 99 10.3390/chemosensors9050099
    [Google Scholar]
  38. Ali R. Ali I.A.I. Messaoudi S. Alminderej F.M. Saleh S.M. J. Mol. Liq. 2021 336 116122 10.1016/j.molliq.2021.116122
    [Google Scholar]
  39. Mohanasundaram D. Bhaskar R. Sankarganesh M. Nehru K. Gangatharan Vinoth Kumar G. Rajesh J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 265 120395 10.1016/j.saa.2021.120395 34536886
    [Google Scholar]
  40. Qi X. Lian Y. Xie L. Wang Y. Lu. Z. Appl. Spectrosc. Rev. 2024 59 8 1036 1060 10.1080/05704928.2023.2294458
    [Google Scholar]
  41. Newar R. Sultana N. Das S. Gogoi B. Islam N.F. Sarma H. Baruah A. J. Environ. Chem. Eng. 2024 12 1 111721 10.1016/j.jece.2023.111721
    [Google Scholar]
  42. Chen H. Zhang L. Hu Y. Zhou C. Lan W. Fu H. She Y. Sens. Actuators B Chem. 2021 329 129135 10.1016/j.snb.2020.129135
    [Google Scholar]
  43. Chen W. Yao Y. Chen T. Shen W. Tang S. Lee H.K. Biosens. Bioelectron. 2021 172 112788 10.1016/j.bios.2020.112788 33157407
    [Google Scholar]
  44. Panda P. Chakroborty S. Int. J. Environ. Anal. Chem. 2024 104 16 4057 4072 10.1080/03067319.2022.2098480
    [Google Scholar]
  45. Ziarani G.M. Khademi M. Mohajer F. Badiei A. Curr. Nanomater. 2022 7 1 4 24 10.2174/2405461506666210420132630
    [Google Scholar]
  46. Kaur R. Gaba J. Kumari S. Midha R. Lett. Org. Chem. 2024 21 3 260 270 10.2174/0115701786263410230928114953
    [Google Scholar]
  47. Maddeshiya T. Jaiswal M.K. Tamrakar A. Mishra G. Awasthi C. Pandey M.D. Curr. Org. Synth. 2024 21 4 421 435 10.2174/1570179420666230621124119 37345247
    [Google Scholar]
  48. Rani P. Lal K. Ghule V.D. Shrivastava R. Curr. Anal. Chem. 2020 16 6 738 743 10.2174/1573411015666191010122744
    [Google Scholar]
  49. Raut J. Sahoo P. Mini Rev. Org. Chem. 2021 18 7 867 884 10.2174/1570193X17999201109212903
    [Google Scholar]
  50. He X. Song S. Li C. Zhang Q. Dong Q. Li L. Lett. Org. Chem. 2023 20 976 981 10.2174/1570178620666230502160603
    [Google Scholar]
  51. Kursunlu A.N. Bastug E. Guler E. Curr. Anal. Chem. 2022 18 2 163 175 10.2174/1573411017666201215105055
    [Google Scholar]
  52. Aslam S. Kousar I. Rani S. Altaf W. Bristy S. Skouta R. Molecules 2025 30 7 1450 10.3390/molecules30071450 40286044
    [Google Scholar]
  53. Das N. Khan T. Das A. Jain V.K. Acharya J. Faizi M.S.H. Daniel J. Sen P. Curr. Anal. Chem. 2022 18 2 196 203 10.2174/1573411016999201123162027
    [Google Scholar]
  54. Noviana E. Siswanto S. Budi Hastuti A.A.M. Curr. Top. Med. Chem. 2022 22 27 2261 2281 10.2174/1568026622666220915114646 36111762
    [Google Scholar]
  55. Sachdeva T. Gupta S. Milton M.D. Curr. Org. Chem. 2020 24 17 1976 1998 10.2174/1385272824999200729132853
    [Google Scholar]
  56. Ghorbanian M. Asghari S. Tajbakhsh M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 296 122652 10.1016/j.saa.2023.122652 36989695
    [Google Scholar]
  57. Gao Y.Y. He J. Li X.H. Li J.H. Wu H. Wen T. Li J. Hao G.F. Yoon. J. Chem. Soc. Rev. 2024 53 13 6992 7090 10.1039/D3CS00504F 38841828
    [Google Scholar]
  58. Udhayakumari D. Ramasundaram S. Jerome P. Oh T.H. J. Fluoresc. 2024 ••• 1 25
    [Google Scholar]
  59. Pohanka M. Biosensors 2025 15 3 197 10.3390/bios15030197 40136994
    [Google Scholar]
  60. Soylukan C. Pamuk Algi M. Algi F. Sonkaya Ö. Curr. Org. Synth. 2023 20 1 20 60 10.2174/1570179419666220216123033 35170414
    [Google Scholar]
  61. Musikavanhu B. Pan T. Ma Q. Liang Y. Xue Z. Feng L. Zhao L. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 313 124101 10.1016/j.saa.2024.124101 38447440
    [Google Scholar]
  62. Lee S.C. Kim C. Inorg. Chem. Commun. 2020 112 107752 10.1016/j.inoche.2019.107752
    [Google Scholar]
  63. Jung S. Lee J.J. Kim C. Bull. Korean Chem. Soc. 2022 43 2 305 311 10.1002/bkcs.12472
    [Google Scholar]
  64. Irshad R. Asim S. Mansha A. Arooj Y. J. Fluoresc. 2023 33 4 1273 1303 10.1007/s10895‑023‑03153‑y 36735102
    [Google Scholar]
  65. Yu Z. Huang W. Xu S. Ke S. Microchem. J. 2021 164 106009 10.1016/j.microc.2021.106009
    [Google Scholar]
  66. Dathees T.J. Makarios Paul S.P. Sanmugam A. Abiram A. Murugan S. Kumar R.S. Almansour A.I. Arumugam N. Nandhakumar R. Vikraman D. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 308 123732 10.1016/j.saa.2023.123732 38064962
    [Google Scholar]
  67. Golbedaghi R. Ildiz G.O. Azadbakht R. Fausto R. J. Mol. Struct. 2022 1250 131775 10.1016/j.molstruc.2021.131775
    [Google Scholar]
  68. Musikavanhu B. Huang Z. Ma Q. Liang Y. Xue Z. Feng L. Zhao L. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 301 122961 10.1016/j.saa.2023.122961 37290147
    [Google Scholar]
  69. Nagarajan R. Kamaraj E. Kim C.H. Lee K.H. Talanta Open 2022 6 100143 10.1016/j.talo.2022.100143
    [Google Scholar]
  70. Anary-Abbasinejad M. Hassanabadi A. Kamali-Gharamaleki M. Saidipoor A. Anaraki-Ardakani H. J. Chem. Res. 2007 2007 11 644 646 10.3184/030823407X266207
    [Google Scholar]
  71. Chan C. Liu H. Xue Z. Microchem J. 2021166 106247 10.1016/j.microc.2021.106247
  72. Buledi J.A. Amin S. Haider S.I. Bhanger M.I. Solangi A.R. Environ. Sci. Pollut. Res. Int. 2021 28 42 58994 59002 10.1007/s11356‑020‑07865‑7 32036535
    [Google Scholar]
  73. Portilla J. Sarmiento J.T. Curr. Org. Synth. 2023 20 1 77 95 10.2174/1570179419666220218095741 35184705
    [Google Scholar]
  74. Tigreros A. Portilla J. Current. Chin. Sci. 2021 1 2 197 206 10.2174/2210298101999201208211116
    [Google Scholar]
  75. Ekta; Utreja, D. Nanomaterials 2021 11 3082
    [Google Scholar]
/content/journals/loc/10.2174/0115701786394217250727154846
Loading
/content/journals/loc/10.2174/0115701786394217250727154846
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: UV-Visible spectroscopy ; lead ions ; metal ions ; Naphthol ; optical chemosensor ; detection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test