Skip to content
2000
image of Novel and Improved Method for the Synthesis of Bis-Benzimidazole, Bis-Benzoxazole, and Bis-Benzothiazole Derivatives

Abstract

Eleven novel derivatives belonging to the benzimidazole, benzoxazole, and benzothiazole families were successfully synthesized through a condensation reaction involving o-phenylenediamine, o-aminothiophenol, and o-aminophenol, respectively. These reactions were carried out in the presence of cyclohexanediaminetetraacetic acid (CDTA) under acidic conditions, which acted as a catalyst to promote the cyclization process. The synthetic procedures employed represent innovative methodologies for the preparation of bis-benzimidazole, bis-benzoxazole, and bis-benzothiazole derivatives, offering isolated yields ranging from 50% to 70%, depending on the specific substrate and reaction conditions. The structural identity and chemical composition of the synthesized compounds were rigorously confirmed by a combination of advanced spectroscopic techniques. These included Nuclear Magnetic Resonance (NMR) spectroscopy, providing detailed information about the hydrogen and carbon environments within the molecules, Fourier-Transform Infrared (FTIR) spectroscopy, allowing for the identification of characteristic functional groups, and High-Resolution Mass Spectrometry (HRMS), offering precise molecular weight determination and providing structural insights. Furthermore, a plausible interaction mechanism underlying the formation of these heterocyclic compounds was proposed, contributing to a better understanding of the reactivity and synthetic pathway involved. This study highlights the potential of CDTA as an effective mediator in heterocyclic synthesis, laying the groundwork for the future development of related compounds with potential applications in medicinal or materials chemistry.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786392628250822155342
2025-09-01
2025-10-24
Loading full text...

Full text loading...

References

  1. Phan N.K.N. Huynh T.K.C. Nguyen H.P. Le Q.T. Nguyen T.C.T. Ngo K.K.H. Nguyen T.H.A. Ton K.A. Thai K.M. Hoang T.K.D. ACS Omega 2023 8 31 28733 28748 10.1021/acsomega.3c03530 37576624
    [Google Scholar]
  2. Grocer H. Kus C. Boykin D.W. Yildiz S. Altanlar N. Bioorg. Med. Chem. 2002 10 2589 2596 10.25004/IJPSDR.2014.060111
    [Google Scholar]
  3. Noolvi M. Agrawal S. Patel H. Badiger A. Gaba M. Zambre A. Arab. J. Chem. 2014 7 2 219 226 10.1016/j.arabjc.2011.02.011
    [Google Scholar]
  4. Hayes W.J. Laws E.R. Handbook of pesticide toxicology, 3. Amsterdam Elsevier 2013 1451 1453 10.1093/ae/37.4.244
    [Google Scholar]
  5. Singh N. Pandurangan A. Rana K. Anand P. Ahamad A. Tiwari A.K. Int. Curr. Pharm. J. 2012 1 5 110 118 10.3329/icpj.v1i5.10284
    [Google Scholar]
  6. Theodorides V.J. Gyurik R.J. Kingsbury W.D. Parish R.C. Experientia 1976 32 6 702 10.1007/BF01919842 950011
    [Google Scholar]
  7. Williams S.L. Hartline C.B. Kushner N.L. Harden E.A. Bidanset D.J. Drach J.C. Townsend L.B. Underwood M.R. Biron K.K. Kern E.R. Antimicrob. Agents Chemother. 2003 47 7 2186 2192 10.1128/AAC.47.7.2186‑2192.2003 12821466
    [Google Scholar]
  8. Rabbani M.G. Islamoglu T. El-Kaderi H.M. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 1 258 265 10.1039/C6TA06342J
    [Google Scholar]
  9. Szymańska M. Czepa W. Hołubowicz C. Świsłocka R. Łuczak T. Kubicki M. Karpińska J. Fik-Jaskółka M.A. Patroniak V. Catalysts 2019 9 11 913 10.3390/catal9110913
    [Google Scholar]
  10. Nnaji N. Nwaji N. Fomo G. Mack J. Nyokong T. Electrocatalysis 2019 10 4 445 458 10.1007/s12678‑019‑00538‑1
    [Google Scholar]
  11. Yang D. Feng X. Yan N. Wang Y. Lu L. Mei P. Chen W. Lai L. Open J. Yangtze Oil Gas 2022 7 2 101 10.4236/ojogas.2022.7200
    [Google Scholar]
  12. Zhang Z.H. Yin L. Wang Y.M. Catal. Commun. 2007 8 7 1126 1131 10.1016/j.catcom.2006.10.022
    [Google Scholar]
  13. Lin S. Yang L. Tetrahedron Lett. 2005 46 25 4315 4319 10.1016/j.tetlet.2005.04.101
    [Google Scholar]
  14. Du L.H. Wang Y.G. Synthesis 2007 2007 05 675 678
    [Google Scholar]
  15. He H.F. Wang Z.J. Bao W. Adv. Synth. Catal. 2010 352 17 2905 2912 10.1002/adsc.201000469
    [Google Scholar]
  16. Pardeshi S.D. Sonar J.P. Pawar S.S. Dekhane D. Gupta S. Zine A.M. Thore S.N. J. Chil. Chem. Soc. 2014 59 1 2335 2340 10.4067/S0717‑97072014000100020
    [Google Scholar]
  17. Chen R. Jalili Z. Tayebee R. RSC Advances 2021 11 27 16359 16375 10.1039/D0RA10843J 35479136
    [Google Scholar]
  18. Douglas B.E. Radanović D. J. Coord. Chem. Rev. 1993 128 1-2 139 165 10.1016/0010‑8545(93)80027‑3
    [Google Scholar]
  19. Gilani S.J. Khan S.A. Siddiqui N. Bioorg. Med. Chem. Lett. 2010 20 16 4762 4765 10.1016/j.bmcl.2010.06.125
    [Google Scholar]
  20. Barasa L. Yoganathan S. RSC Advances 2018 8 62 35824 35830 10.1039/C8RA07773H 35547918
    [Google Scholar]
/content/journals/loc/10.2174/0115701786392628250822155342
Loading
/content/journals/loc/10.2174/0115701786392628250822155342
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test