Skip to content
2000
image of Rotational Barrier and Origin of Substituent Effect on Bond Dissociation Enthalpy of Para-substituted Anilines, Benzaldehydes, and Toluenes

Abstract

Understanding the rotational barriers (RBs) and bond dissociation enthalpies (BDEt) of substituted aromatic compounds is crucial for predicting their chemical reactivity and stability. The RBs for 26 varying para-substituted anilines, benzaldehydes, and toluenes around the respective phenyl-NH, -CHO, and -CH bonds, as well as around the corresponding radical phenyl-NH, -CO, and -CH bonds, were computed, based on the Density Functional Theory (DFT). The BDEt of the aminic N-H, CO-H, and methyl C-H bonds in the respective neutral molecules was also computed. The RBs and various geometric, molecular, and atomic properties were used to explain how the substituents influence the BDEt. The trends were rationalized by considering the relative stabilization/destabilization of the parent neutral molecules versus the corresponding radicals. This study is the first in which trends in the RBs and BDEts are rationalized by considering the effect of substituent, providing valuable information for understanding the fundamental behavior of substituted aromatics.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786384297250526123110
2025-05-29
2025-11-14
Loading full text...

Full text loading...

References

  1. Nam P.C. Quan V.V. Thong N.M. Thao P.T.T. Invited review. Bond dissociation enthalpies in benzene derivatives and effect of substituents: An overview of density functional theory (B3LYP) based computational approach. Vietnam J. Chem. 2017 55 6 679 10.15625/2525‑2321.2017‑00527
    [Google Scholar]
  2. Sisti S. Ioele F. Scarchilli F. Galeotti M. DiLabio G.A. Salamone M. Bietti M. Activation and deactivation of benzylic C−H bonds guided by stereoelectronic effects in hydrogen atom transfer from amides and amines to alkoxyl radicals. Eur. J. Org. Chem. 2023 26 37 e202300419 10.1002/ejoc.202300419
    [Google Scholar]
  3. Bao G. Abe R.Y. Akutsu Y. Bond dissociation energy and thermal stability of energetic materials. J. Therm. Anal. Calorim. 2021 143 5 3439 3445 10.1007/s10973‑020‑10273‑1
    [Google Scholar]
  4. Ghosh D. Samal A.K. Parida A. Ikbal M. Jana A. Jana R. Sahu P.K. Giri S. Samanta S. Progress in electrochemically empowered C−O bond formation: Unveiling the pathway of efficient green synthesis. Chem. Asian J. 2024 19 11 e202400116 10.1002/asia.202400116 38584137
    [Google Scholar]
  5. Galano A. Muñoz-Rugeles L. Alvarez-Idaboy J.R. Bao J.L. Truhlar D.G. Hydrogen abstraction reactions from phenolic compounds by peroxyl radicals: Multireference character and density functional theory rate constants. J. Phys. Chem. A 2016 120 27 4634 4642 10.1021/acs.jpca.5b07662 26378461
    [Google Scholar]
  6. Lai W. Li C. Chen H. Shaik S. Hydrogen-abstraction reactivity patterns from A to Y: The valence bond way. Angew. Chem. Int. Ed. 2012 51 23 5556 5578 10.1002/anie.201108398 22566272
    [Google Scholar]
  7. Garrett G.E. Pratt D.A. Parent J.S. Hydrogen atom abstraction from polyolefins: Experimental and computational studies of model systems. Macromolecules 2020 53 8 2793 2800 10.1021/acs.macromol.9b02091
    [Google Scholar]
  8. Blanksby S.J. Ellison G.B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 2003 36 4 255 263 10.1021/ar020230d 12693923
    [Google Scholar]
  9. Hudzik J.M. Bozzelli J.W. Thermochemistry and bond dissociation energies of ketones. J. Phys. Chem. A 2012 116 23 5707 5722 10.1021/jp302830c 22668341
    [Google Scholar]
  10. Boyarkin O.V. Koshelev M.A. Aseev O. Maksyutenko P. Rizzo T.R. Zobov N.F. Lodi L. Tennyson J. Polyansky O.L. Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations. Chem. Phys. Lett. 2013 568-569 14 20 10.1016/j.cplett.2013.03.007
    [Google Scholar]
  11. Yang K. Zheng J. Zhao Y. Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010 132 16 164117 10.1063/1.3382342
    [Google Scholar]
  12. Sanderson R. Chemical bonds and bonds energy. Amsterdam, Netherlands Elsevier 2012
    [Google Scholar]
  13. Paenurk E. Chen P. Robustness of threshold collision-induced dissociation simulations for bond dissociation energies. J. Phys. Chem. A 2024 128 1 333 342 10.1021/acs.jpca.3c06862 38155581
    [Google Scholar]
  14. Guan X.H. Wang D. Wang Q. Chi M.S. Liu C.G. Estimation of various chemical bond dissociation enthalpies of large-sized kerogen molecules using DFT methods. Mol. Phys. 2016 114 11 1705 1755 10.1080/00268976.2016.1143983
    [Google Scholar]
  15. Poliak P. Vagánek A. Lukeš V. Klein E. Substitution and torsional effects on the energetics of homolytic N–H bond cleavage in diphenylamines. Polym. Degrad. Stabil. 2015 114 37 44 10.1016/j.polymdegradstab.2015.01.019
    [Google Scholar]
  16. Vo Q.V. Nam P.C. Thong N.M. Trung N.T. Phan C.T.D. Mechler A. Antioxidant motifs in flavonoids: O–H versus C–H bond dissociation. ACS Omega 2019 4 5 8935 8942 10.1021/acsomega.9b00677 31459981
    [Google Scholar]
  17. Alisi I.O. Uzairu A. Abechi S.E. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: Thermodynamics of O–H and N–H bond cleavage. Heliyon 2020 6 3 e03683 10.1016/j.heliyon.2020.e03683 32258501
    [Google Scholar]
  18. Boli P.L.S. Rusydi F. Khoirunisa V. Puspitasari I. Rachmawati H. Dipojono H.K.O. —H and C—H bond dissociations in non-phenyl and phenyl groups: A DFT study with dispersion and long-range corrections. Theor. Chem. Acc. 2021 140 7 94 10.1007/s00214‑021‑02781‑6
    [Google Scholar]
  19. Bach R.D. Schlegel H.B. Bond dissociation energy of peroxides revisited. J. Phys. Chem. A 2020 124 23 4742 4751 10.1021/acs.jpca.0c02859 32396002
    [Google Scholar]
  20. Treyde W. Riedmiller K. Gräter F. Bond dissociation energies of X–H bonds in proteins. RSC Advances 2022 12 53 34557 34564 10.1039/D2RA04002F 36545577
    [Google Scholar]
  21. Gibson J.K. Bond dissociation energies reveal the participation of d electrons in f-element halide bonding. J. Phys. Chem. A 2022 126 2 272 285 10.1021/acs.jpca.1c09090 35007073
    [Google Scholar]
  22. Bian C. Wang S. Liu Y. Jing X. Thermal stability of phenolic resin: New insights based on bond dissociation energy and reactivity of functional groups. RSC Advances 2016 6 60 55007 55016 10.1039/C6RA07597E
    [Google Scholar]
  23. Gatineau D. Lesage D. Guéret R. Mador S.D. Milet A. Gimbert Y. Understanding gold‐alkyne activation from bond dissociation energies of gold‐alkyne complexes. Eur. J. Org. Chem. 2024 27 29 e202400340 10.1002/ejoc.202400340
    [Google Scholar]
  24. Alongi K.S. Shields G.C. Theoretical calculations of acid dissociation constants: A review article. Annu. Rep. Comput. Chem. 2010 6 113 138 10.1016/S1574‑1400(10)06008‑1
    [Google Scholar]
  25. Kaliyeva L. Zhumagali S. Akhmetova N. Karton A. O’Reilly R.J. Stability of the chlorinated derivatives of the DNA/RNA nucleobases, purine and pyrimidine toward radical formation via homolytic C-Cl bond dissociation. Int. J. Quantum Chem. 2017 117 4 e25319 10.1002/qua.25319
    [Google Scholar]
  26. Thong N.M. Duong T. Pham L.T. Nam P.C. Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM(ROB3LYP/6-311++G] (2df,2p):PM6) method. Chem. Phys. Lett. 2014 613 139 145 10.1016/j.cplett.2014.08.067
    [Google Scholar]
  27. Pandithavidana D.R. Jayawardana S.B. Comparative study of antioxidant potential of selected dietary vitamins; computational insights. Molecules 2019 24 9 1646 10.3390/molecules24091646 31027343
    [Google Scholar]
  28. Thao P.T.T. Tran B.T. Thong N.M. Quang D.T. Hien N.K. Nguyen M.T. Nam P.C. Substituent effects on the n–h bond dissociation enthalpies, ionization energies, acidities, and radical scavenging behavior of 3,7-disubstituted phenoxazines and 3,7-disubstituted phenothiazines. ACS Omega 2020 5 42 27572 27581 10.1021/acsomega.0c04144 33134721
    [Google Scholar]
  29. Xia L. Zhang H-m. Li N. Comparative investigation on antioxidant properties of phenolic compounds in lubricants. J. Phys. Conf. Ser. 2022 2348 012016
    [Google Scholar]
  30. Johnson E.L. Davis Q.C. Morse M.D. Predissociation measurements of bond dissociation energies: VC, VN, and VS. J. Chem. Phys. 2016 144 23 234306 10.1063/1.4953782 27334161
    [Google Scholar]
  31. Morse M.D. Predissociation measurements of bond dissociation energies. Acc. Chem. Res. 2019 52 1 119 126 10.1021/acs.accounts.8b00526 30596416
    [Google Scholar]
  32. Reed D.R. Kass S.R. Experimental determination of the α and β] C-H bond dissociation energies in naphthalene. J. Mass Spectrom. 2000 35 4 534 539 10.1002/(SICI)1096‑9888(200004)35:4<534:AID‑JMS964>3.0.CO;2‑T 10797649
    [Google Scholar]
  33. Bot M. Gorbachev V. Tsybizova A. Chen P. Bond dissociation energies in the gas phase for large molecular ions by threshold collision-induced dissociation experiments: Stretching the limits. J. Phys. Chem. A 2020 124 42 8692 8707 10.1021/acs.jpca.0c05712 32955888
    [Google Scholar]
  34. Speetzen B. Kass S.R. Ferrocene acidity and C–H bond dissociation energy via experiment and theory. J. Phys. Chem. A 2019 123 28 6016 6021 10.1021/acs.jpca.9b04382 31268713
    [Google Scholar]
  35. Squillacote M.E. Sheridan R.S. Chapman O.L. Anet F.A.L. Planar s-cis-1,3-butadiene. J. Am. Chem. Soc. 1979 101 13 3657 3659 10.1021/ja00507a042
    [Google Scholar]
  36. Khrapkovskii G.M. Tsyshevsky R.V. Chachkov D.V. Egorov D.L. Shamov A.G. Formation enthalpies and bond dissociation enthalpies for C1–C4 mononitroalkanes by composite and DFT/B3LYP methods. J. Mol. Struct. Theochem 2010 958 1-3 1 6 10.1016/j.theochem.2010.07.012
    [Google Scholar]
  37. Chan B. Radom L. BDE261: A comprehensive set of high-level theoretical bond dissociation enthalpies. J. Phys. Chem. A 2012 116 20 4975 4986 10.1021/jp302542z 22587308
    [Google Scholar]
  38. John S.P.C. Guan Y. Kim Y. Kim S. Paton R.S. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat. Commun. 2020 11 1 2328 10.1038/s41467‑020‑16201‑z 32393773
    [Google Scholar]
  39. Kosar N. Ayub K. Gilani M.A. Mahmood T. Benchmark DFT studies on C–CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J. Mol. Model. 2019 25 2 47 10.1007/s00894‑019‑3930‑x 30690660
    [Google Scholar]
  40. Bach R.D. Schlegel H.B. The bond dissociation energy of the N–O bond. J. Phys. Chem. A 2021 125 23 5014 5021 10.1021/acs.jpca.1c02741 34086470
    [Google Scholar]
  41. Trung N.Q. Mechler A. Hoa N.T. Vo Q.V. Calculating bond dissociation energies of X−H (X=C, N, O, S) bonds of aromatic systems via density functional theory: A detailed comparison of methods. R. Soc. Open Sci. 2022 9 6 220177 10.1098/rsos.220177 35706655
    [Google Scholar]
  42. Aliaga C. Almodovar I. Rezende M.C. A single theoretical descriptor for the bond-dissociation energy of substituted phenols. J. Mol. Model. 2015 21 1 12 10.1007/s00894‑015‑2572‑x 25617211
    [Google Scholar]
  43. Khursan S.L. Homodesmotic method of determining the O–H bond dissociation energies in phenols. Kinet. Catal. 2016 57 2 159 169 10.1134/S0023158416010067
    [Google Scholar]
  44. Denisov E.T. Denisova T.G. Dissociation energies of N-H bonds in aromatic amines (review). Petrol Chem. 2015 55 2 85 103 10.1134/S0965544115020073
    [Google Scholar]
  45. Vagánek A. Rimarčík J. Ilčin M. Škorňa P. Lukeš V. Klein E. Homolytic N–H bond cleavage in anilines: Energetics and substituent effect. Comput. Theor. Chem. 2013 1014 60 67 10.1016/j.comptc.2013.03.027
    [Google Scholar]
  46. Yateem A.H. Rotational barrier and electron-withdrawing substituent effects: Theoretical study of π-conjugation in para-substituted anilines. J. Chem. 2020 10 319 334
    [Google Scholar]
  47. Yateem A.H. Rotational barrier and quantification of electron-donating substituent effects: A computational study of para-substituted benzaldehydes. Croat. Chem. Acta 2020 93 2 85 95 10.5562/cca3672
    [Google Scholar]
  48. Yateem A.H. Rotational barrier and bond dissociation energy and enthalpy: Computational study of the substituent effects in para-substituted anilines and phenols. Indonesian J. Chem. 2022 22 1 179 191 10.22146/ijc.68687
    [Google Scholar]
  49. Haloui A. Arfaoui Y. A DFT study of the conformational behavior of para-substituted acetophenones in vacuum and in various solvents. J. Mol. Struct. Theochem 2010 950 1-3 13 19 10.1016/j.theochem.2010.03.012
    [Google Scholar]
  50. Chieh Y.C. Chen P.C. Chen S.C. Theoretical study of the internal rotational barriers in some N-substituted nitropyrroles. J. Mol. Struct. Theochem 2003 636 1-3 115 123 10.1016/S0166‑1280(03)00468‑8
    [Google Scholar]
  51. Radom L. Hehre W.J. Pople J.A. Carlson G.L. Fateley W.G. Torsional barriers in para-substituted phenols from ab initio molecular orbital theory and far infrared spectroscopy. J. Chem. Soc. Chem. Commun. 1972 6 308 309 10.1039/c39720000308
    [Google Scholar]
  52. Chen P.C. Chieh Y.C. Density functional theory study of the internal rotational barriers of some aromatic nitro compounds. J. Mol. Struct. Theochem 2002 583 1-3 173 180 10.1016/S0166‑1280(01)00809‑0
    [Google Scholar]
  53. Klein E. Lukeš V. Study of gas-phase O–H bond dissociation enthalpies and ionization potentials of substituted phenols – Applicability of ab initio and DFT/B3LYP methods. Chem. Phys. 2006 330 3 515 525 10.1016/j.chemphys.2006.09.026
    [Google Scholar]
  54. Li Z. Cheng J.P. A detailed investigation of subsitituent effects on N-h bond enthalpies in aniline derivatives and on the stability of corresponding N-centered radicals. J. Org. Chem. 2003 68 19 7350 7360 10.1021/jo0269215 12968886
    [Google Scholar]
  55. Pratt D.A. DiLabio G.A. Valgimigli L. Pedulli G.F. Ingold K.U. Substituent effects on the bond dissociation enthalpies of aromatic amines. J. Am. Chem. Soc. 2002 124 37 11085 11092 10.1021/ja026289x 12224956
    [Google Scholar]
  56. Jonsson M. Lind J. Merényi G. Eriksen T.E. N–H bond dissociation energies, reduction potentials and pKas of multisubstituted anilines and aniline radical cations. J. Chem. Soc., Perkin Trans. 2 1995 1 61 65 10.1039/P29950000061
    [Google Scholar]
  57. Bordwell F.G. Zhang X.M. Cheng J.P. Bond dissociation energies of the nitrogen-hydrogen bonds in anilines and in the corresponding radical anions. Equilibrium acidities of aniline radical cations. J. Org. Chem. 1993 58 23 6410 6416 10.1021/jo00075a041
    [Google Scholar]
  58. Yateem A.H. Rotational barrier and conjugation: Theoretical study of resonance stabilization of various substituents for the donors NH2 and OCH3 in substituted 1,3-butadienes. Indonesian J. Chem. 2019 19 4 1055 1065 10.22146/ijc.42850
    [Google Scholar]
  59. Chai J.D. Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008 10 44 6615 6620 10.1039/b810189b 18989472
    [Google Scholar]
  60. Wavefunction Irvine USA 2014 1 9
    [Google Scholar]
  61. Xu S. Wang Q.D. Sun M.M. Yin G. Liang J. Benchmark calculations for bond dissociation energies and enthalpy of formation of chlorinated and brominated polycyclic aromatic hydrocarbons. RSC Advances 2021 11 47 29690 29701 10.1039/D1RA05391D 35479574
    [Google Scholar]
/content/journals/loc/10.2174/0115701786384297250526123110
Loading
/content/journals/loc/10.2174/0115701786384297250526123110
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test