Skip to content
2000
Volume 22, Issue 11
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Understanding the rotational barriers (RBs) and bond dissociation enthalpies (BDEt) of substituted aromatic compounds is crucial for predicting their chemical reactivity and stability. The RBs for 26 varying para-substituted anilines, benzaldehydes, and toluenes around the respective phenyl-NH, -CHO, and -CH bonds, as well as around the corresponding radical phenyl-NH, -CO, and -CH bonds, were computed, based on the Density Functional Theory (DFT). The BDEt of the aminic N-H, CO-H, and methyl C-H bonds in the respective neutral molecules was also computed. The RBs and various geometric, molecular, and atomic properties were used to explain how the substituents influence the BDEt. The trends were rationalized by considering the relative stabilization/destabilization of the parent neutral molecules versus the corresponding radicals. This study is the first in which trends in the RBs and BDEts are rationalized by considering the effect of substituent, providing valuable information for understanding the fundamental behavior of substituted aromatics.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786384297250526123110
2025-11-01
2026-01-02
Loading full text...

Full text loading...

References

  1. NamP.C. QuanV.V. ThongN.M. ThaoP.T.T. Vietnam J. Chem.201755667910.15625/2525‑2321.2017‑00527
    [Google Scholar]
  2. SistiS. IoeleF. ScarchilliF. GaleottiM. DiLabioG.A. SalamoneM. BiettiM. Eur. J. Org. Chem.20232637e20230041910.1002/ejoc.202300419
    [Google Scholar]
  3. BaoG. AbeR.Y. AkutsuY. J. Therm. Anal. Calorim.202114353439344510.1007/s10973‑020‑10273‑1
    [Google Scholar]
  4. GhoshD. SamalA.K. ParidaA. IkbalM. JanaA. JanaR. SahuP.K. GiriS. SamantaS. Chem. Asian J.20241911e20240011610.1002/asia.202400116 38584137
    [Google Scholar]
  5. GalanoA. Muñoz-RugelesL. Alvarez-IdaboyJ.R. BaoJ.L. TruhlarD.G. J. Phys. Chem. A2016120274634464210.1021/acs.jpca.5b07662 26378461
    [Google Scholar]
  6. LaiW. LiC. ChenH. ShaikS. Angew. Chem. Int. Ed.201251235556557810.1002/anie.201108398 22566272
    [Google Scholar]
  7. GarrettG.E. PrattD.A. ParentJ.S. Macromolecules20205382793280010.1021/acs.macromol.9b02091
    [Google Scholar]
  8. BlanksbyS.J. EllisonG.B. Acc. Chem. Res.200336425526310.1021/ar020230d 12693923
    [Google Scholar]
  9. HudzikJ.M. BozzelliJ.W. J. Phys. Chem. A2012116235707572210.1021/jp302830c 22668341
    [Google Scholar]
  10. BoyarkinO.V. KoshelevM.A. AseevO. MaksyutenkoP. RizzoT.R. ZobovN.F. LodiL. TennysonJ. PolyanskyO.L. Chem. Phys. Lett.2013568-569142010.1016/j.cplett.2013.03.007
    [Google Scholar]
  11. YangK. ZhengJ. ZhaoY. TruhlarD.G. J. Chem. Phys.20101321616411710.1063/1.3382342
    [Google Scholar]
  12. SandersonR. Chemical bonds and bonds energy.Amsterdam, NetherlandsElsevier2012
    [Google Scholar]
  13. PaenurkE. ChenP. J. Phys. Chem. A2024128133334210.1021/acs.jpca.3c06862 38155581
    [Google Scholar]
  14. GuanX.H. WangD. WangQ. ChiM.S. LiuC.G. Mol. Phys.2016114111705175510.1080/00268976.2016.1143983
    [Google Scholar]
  15. PoliakP. VagánekA. LukešV. KleinE. Polym. Degrad. Stabil.2015114374410.1016/j.polymdegradstab.2015.01.019
    [Google Scholar]
  16. VoQ.V. NamP.C. ThongN.M. TrungN.T. PhanC.T.D. MechlerA. ACS Omega2019458935894210.1021/acsomega.9b00677 31459981
    [Google Scholar]
  17. AlisiI.O. UzairuA. AbechiS.E. Heliyon202063e0368310.1016/j.heliyon.2020.e03683 32258501
    [Google Scholar]
  18. BoliP.L.S. RusydiF. KhoirunisaV. PuspitasariI. RachmawatiH. DipojonoH.K. Theor. Chem. Acc.202114079410.1007/s00214‑021‑02781‑6
    [Google Scholar]
  19. BachR.D. SchlegelH.B. J. Phys. Chem. A2020124234742475110.1021/acs.jpca.0c02859 32396002
    [Google Scholar]
  20. TreydeW. RiedmillerK. GräterF. RSC Advances20221253345573456410.1039/D2RA04002F 36545577
    [Google Scholar]
  21. GibsonJ.K. J. Phys. Chem. A2022126227228510.1021/acs.jpca.1c09090 35007073
    [Google Scholar]
  22. BianC. WangS. LiuY. JingX. RSC Advances2016660550075501610.1039/C6RA07597E
    [Google Scholar]
  23. GatineauD. LesageD. GuéretR. MadorS.D. MiletA. GimbertY. Eur. J. Org. Chem.20242729e20240034010.1002/ejoc.202400340
    [Google Scholar]
  24. AlongiK.S. ShieldsG.C. Annu. Rep. Comput. Chem.2010611313810.1016/S1574‑1400(10)06008‑1
    [Google Scholar]
  25. KaliyevaL. ZhumagaliS. AkhmetovaN. KartonA. O’ReillyR.J. Int. J. Quantum Chem.20171174e2531910.1002/qua.25319
    [Google Scholar]
  26. ThongN.M. DuongT. PhamL.T. NamP.C. Chem. Phys. Lett.201461313914510.1016/j.cplett.2014.08.067
    [Google Scholar]
  27. PandithavidanaD.R. JayawardanaS.B. Molecules2019249164610.3390/molecules24091646 31027343
    [Google Scholar]
  28. ThaoP.T.T. TranB.T. ThongN.M. QuangD.T. HienN.K. NguyenM.T. NamP.C. ACS Omega2020542275722758110.1021/acsomega.0c04144 33134721
    [Google Scholar]
  29. XiaL. ZhangH-m. LiN. J. Phy Conf Ser20222348012016
    [Google Scholar]
  30. JohnsonE.L. DavisQ.C. MorseM.D. J. Chem. Phys.20161442323430610.1063/1.4953782 27334161
    [Google Scholar]
  31. MorseM.D. Acc. Chem. Res.201952111912610.1021/acs.accounts.8b00526 30596416
    [Google Scholar]
  32. ReedD.R. KassS.R. J. Mass Spectrom.200035453453910.1002/(SICI)1096‑9888(200004)35:4<534::AID‑JMS964>3.0.CO;2‑T 10797649
    [Google Scholar]
  33. BotM. GorbachevV. TsybizovaA. ChenP. J. Phys. Chem. A2020124428692870710.1021/acs.jpca.0c05712 32955888
    [Google Scholar]
  34. SpeetzenB. KassS.R. J. Phys. Chem. A2019123286016602110.1021/acs.jpca.9b04382 31268713
    [Google Scholar]
  35. SquillacoteM.E. SheridanR.S. ChapmanO.L. AnetF.A.L. J. Am. Chem. Soc.1979101133657365910.1021/ja00507a042
    [Google Scholar]
  36. KhrapkovskiiG.M. TsyshevskyR.V. ChachkovD.V. EgorovD.L. ShamovA.G. J. Mol. Struct. Theochem20109581-31610.1016/j.theochem.2010.07.012
    [Google Scholar]
  37. ChanB. RadomL. J. Phys. Chem. A2012116204975498610.1021/jp302542z 22587308
    [Google Scholar]
  38. JohnS.P.C. GuanY. KimY. KimS. PatonR.S. Nat. Commun.2020111232810.1038/s41467‑020‑16201‑z 32393773
    [Google Scholar]
  39. KosarN. AyubK. GilaniM.A. MahmoodT. J. Mol. Model.20192524710.1007/s00894‑019‑3930‑x 30690660
    [Google Scholar]
  40. BachR.D. SchlegelH.B. J. Phys. Chem. A2021125235014502110.1021/acs.jpca.1c02741 34086470
    [Google Scholar]
  41. TrungN.Q. MechlerA. HoaN.T. VoQ.V. R. Soc. Open Sci.20229622017710.1098/rsos.220177 35706655
    [Google Scholar]
  42. AliagaC. AlmodovarI. RezendeM.C. J. Mol. Model.20152111210.1007/s00894‑015‑2572‑x 25617211
    [Google Scholar]
  43. KhursanS.L. Kinet. Catal.201657215916910.1134/S0023158416010067
    [Google Scholar]
  44. DenisovE.T. DenisovaT.G. Petrol. Chem.20155528510310.1134/S0965544115020073
    [Google Scholar]
  45. VagánekA. RimarčíkJ. IlčinM. ŠkorňaP. LukešV. KleinE. Comput. Theor. Chem.20131014606710.1016/j.comptc.2013.03.027
    [Google Scholar]
  46. YateemA.H. J. Chem.202010319334
    [Google Scholar]
  47. YateemA.H. Croat. Chem. Acta2020932859510.5562/cca3672
    [Google Scholar]
  48. YateemA.H. Indonesian.J. Chem.202222117919110.22146/ijc.68687
    [Google Scholar]
  49. HalouiA. ArfaouiY. J. Mol. Struct. Theochem20109501-3131910.1016/j.theochem.2010.03.012
    [Google Scholar]
  50. ChiehY.C. ChenP.C. ChenS.C. J. Mol. Struct. Theochem20036361-311512310.1016/S0166‑1280(03)00468‑8
    [Google Scholar]
  51. RadomL. HehreW.J. PopleJ.A. CarlsonG.L. FateleyW.G. J. Chem. Soc. Chem. Commun.1972630830910.1039/c39720000308
    [Google Scholar]
  52. ChenP.C. ChiehY.C. J. Mol. Struct. Theochem20025831-317318010.1016/S0166‑1280(01)00809‑0
    [Google Scholar]
  53. KleinE. LukešV. Chem. Phys.2006330351552510.1016/j.chemphys.2006.09.026
    [Google Scholar]
  54. LiZ. ChengJ.P. J. Org. Chem.200368197350736010.1021/jo0269215 12968886
    [Google Scholar]
  55. PrattD.A. DiLabioG.A. ValgimigliL. PedulliG.F. IngoldK.U. J. Am. Chem. Soc.200212437110851109210.1021/ja026289x 12224956
    [Google Scholar]
  56. JonssonM. LindJ. MerényiG. EriksenT.E. J. Chem. Soc., Perkin Trans. 219951616510.1039/P29950000061
    [Google Scholar]
  57. BordwellF.G. ZhangX.M. ChengJ.P. J. Org. Chem.199358236410641610.1021/jo00075a041
    [Google Scholar]
  58. YateemA.H. Indonesian.J. Chem.20191941055106510.22146/ijc.42850
    [Google Scholar]
  59. ChaiJ.D. Head-GordonM. Phys. Chem. Chem. Phys.200810446615662010.1039/b810189b 18989472
    [Google Scholar]
  60. WavefunctionIrvine USA201419
    [Google Scholar]
  61. XuS. WangQ.D. SunM.M. YinG. LiangJ. RSC Advances20211147296902970110.1039/D1RA05391D 35479574
    [Google Scholar]
/content/journals/loc/10.2174/0115701786384297250526123110
Loading
/content/journals/loc/10.2174/0115701786384297250526123110
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test