Skip to content
2000
image of Synthesis of 3, 3-Di(indolyl)indolin-2-one in the Presence of Iron
Nanocatalysts

Abstract

3, 3-di(indolyl)indolin-2-one derivatives have attracted the attention of researchers due to their various biological and medicinal applications. Due to the significant importance of indole compounds, various methods with different conditions and catalysts have been used for their synthesis. However, some of these reactions have disadvantages, such as low efficiency, long reaction time, use of toxic solvents, . In the study, iron nanocatalysts have been used as a suitable catalyst to prepare 3, 3-di(indolyl)indolin-2-one derivatives. This method has many advantages compared to other methods and it completes the reaction in a shorter time and with a higher yield, as described in this article.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786368671250215200344
2025-03-27
2025-11-14
Loading full text...

Full text loading...

References

  1. Armor J.N. Appl. Catal. A Gen. 1999 189 2 153 162 10.1016/S0926‑860X(99)00273‑2
    [Google Scholar]
  2. Nelson W.M. Green Solvents for chemistry. New York 2003 10.1093/oso/9780195157369.001.0001
    [Google Scholar]
  3. Eicher T. The Chemistry of Heterocycles Structure Reactions Syntheses and Applications. Wiley 2003
    [Google Scholar]
  4. Indoloes Part One. New York Wiley Interscience 1972
    [Google Scholar]
  5. Indoles. San Diego Academic Press 1996
    [Google Scholar]
  6. Heterocyclic Chemistry Black Well Science. Oxford, UK 2000
    [Google Scholar]
  7. Sundberg R.J. The chemistry of indoles. New York Academic Press 1996
    [Google Scholar]
  8. Abedman. J. J. Chem. Res. 2000 264
    [Google Scholar]
  9. Goehring R.R. J. Am. Chem. Soc. 1985 107 435
    [Google Scholar]
  10. Galliford C.V. Scheidt K.A. Angew. Chem. 2007 119 46 8902 8912 10.1002/ange.200701342
    [Google Scholar]
  11. Marti C. Carreira E.M. Eur. J. Org. Chem. 2003 2003 12 2209 2219 10.1002/ejoc.200300050
    [Google Scholar]
  12. Lin H. Danishefsky S.J. Angew. Chem. 2003 115 1 38 53 10.1002/ange.200390018
    [Google Scholar]
  13. Jensen B.S. CNS Drug Rev. 2002 8 4 353 360 10.1111/j.1527‑3458.2002.tb00233.x 12481191
    [Google Scholar]
  14. Pope F.D. J. Heterocycl. Chem. 1984 21 1641 10.1002/jhet.5570210614
    [Google Scholar]
  15. Pajouhesh H. J. Pharm. Sci. 1983 72 318
    [Google Scholar]
  16. Joshi K.C. Pharmazie 1980 35 11 677 679
    [Google Scholar]
  17. Bergman J. Eklund N. Tetrahedron 1980 36 10 1445 1450 10.1016/0040‑4020(80)85060‑5
    [Google Scholar]
  18. Azizian J. Ji S. J. Catal. Commun. 2006 7 752
    [Google Scholar]
  19. Wang S.Y. Ji S.J. Tetrahedron 2006 62 7 1527 1535 10.1016/j.tet.2005.11.011
    [Google Scholar]
  20. Yadav. J.S. Synthesis 2006 4121
    [Google Scholar]
  21. Paira P. Bioorg. Med. Chem. Lett. 2009 19 16 4786 4789
    [Google Scholar]
  22. Rad-Moghadam K. Tetrahedron 2010 66 2316 10.1016/j.tet.2010.02.017 32287419
    [Google Scholar]
  23. Baeyer A. Lazarus M.J. Ber. Dtsch. Chem. Ges. 1885 18 2 2637 2643 10.1002/cber.188501802170
    [Google Scholar]
  24. Zhou F. Liu Y.L. Zhou. J. Adv. Synth. Catal. 2010 352 9 1381 1407 10.1002/adsc.201000161
    [Google Scholar]
  25. Klumpp D.A. Yeung K.Y. Prakash G.K.S. Olah G.A. J. Org. Chem. 1998 63 13 4481 4484 10.1021/jo980588g
    [Google Scholar]
  26. Mai C.K. Org. Lett. 2010 12 2306
    [Google Scholar]
  27. Joule J. Thieme. Stuttgart; 2000 10 361
    [Google Scholar]
  28. Pandeya S.N. Acta Pharm. 2005 55 27 46 15907222
    [Google Scholar]
  29. Baeyer A. Ann. 1866 140 295
    [Google Scholar]
  30. Baeyer A. Emmerling A. Ber. Dtsch. Chem. Ges. 1869 2 1 679 682 10.1002/cber.186900201268
    [Google Scholar]
  31. Van Order R.B. Lindwall H.G. Chem. Rev. 1942 30 1 69 96 10.1021/cr60095a004
    [Google Scholar]
  32. Gribble G.W. J. Chem. Soc. ParkinTrans 2000 7 1045 1075
    [Google Scholar]
  33. Cacchi S. Chem. Rev. 2005 105 2873 10.1021/cr040639b 16011327
    [Google Scholar]
  34. Humphrey G.R. Chem. Rev. 2006 106 2875 10.1021/cr0505270 16836303
    [Google Scholar]
  35. Popp F.D. J. Heterocycl. Chem. 1984 21 6 1641 1645 10.1002/jhet.5570210614
    [Google Scholar]
  36. Robinson B. The Fischer Indole Synthesis; Wiley : Nww York 1982
    [Google Scholar]
  37. Sheldon R.A. Green Chem. 2005 7 5 267 10.1039/b418069k
    [Google Scholar]
  38. Li C.J. Chen L. Chem. Soc. Rev. 2006 35 1 68 82 10.1039/B507207G 16365643
    [Google Scholar]
  39. Grieco P.A. Organic synthesis in water. London Blackie Academic and Professional 1998 10.1007/978‑94‑011‑4950‑1
    [Google Scholar]
  40. Li C.J. Chan T.H. Organic reactions in aqueous media. New York Wiley 1997
    [Google Scholar]
  41. Alimohammadi K. Monatsh. Chem. 2008 139 1037 1039
    [Google Scholar]
  42. Alimohammadi K. Tetrahedron 2011 67 1589
    [Google Scholar]
  43. Sarrafi., Y. Tetrahedron Lett. 2010 51 4734
    [Google Scholar]
  44. Hughes D.L. Org. Prep. Proced. Int. 1993 25 6 607 632 10.1080/00304949309356257
    [Google Scholar]
  45. Przhevalski L. Kostromina Y. Grandberg I.I. Chem. Heterocycl. Compd. 1988 24 7 709 721 10.1007/BF00633160
    [Google Scholar]
  46. Clack R.D. Heterocycles 1984 22 195
    [Google Scholar]
  47. Sołoducho J. Tetrahedron Lett. 1999 40 12 2429 2430 10.1016/S0040‑4039(99)00121‑5
    [Google Scholar]
  48. Kamal A. Bioorg. Med. Chem. Lett. 2010 20 5229 10.1016/j.bmcl.2010.06.152 20673629
    [Google Scholar]
  49. Paira P. Mondal. N.B. Bioorg. Med. Chem. Lett. 2009 19 4786 10.1016/j.bmcl.2009.06.049 19564109
    [Google Scholar]
  50. Sarrafi Y. Monatsh. Chem. 2012 143 1519 10.1007/s00706‑012‑0723‑7
    [Google Scholar]
  51. Alimohammadi K. Monatsh. Chem. 2008 139 1037 10.1007/s00706‑008‑0885‑5
    [Google Scholar]
  52. Yadav J.S. Synthesis 2006 24 4121 10.1055/s‑2006‑950373
    [Google Scholar]
  53. Azizian J. Karimi. A.R. Catal. Commun. 2006 7 752 10.1016/j.catcom.2006.01.026
    [Google Scholar]
  54. Azizian J. Mohammadi A.A. Karimi N. Mohammadizadeh M.R. Karimi A.R. Catal. Commun. 2006 7 10 752 755
    [Google Scholar]
  55. Batch A.D. Org. Synth. 1984 63 214
    [Google Scholar]
  56. Xing L. Hui Y. Yang J. Xing X. Hou Y. Wu Y. Fan K. Wang W. J. Chem. 2018 2018 2018 1 6 10.1155/2018/2785067
    [Google Scholar]
/content/journals/loc/10.2174/0115701786368671250215200344
Loading
/content/journals/loc/10.2174/0115701786368671250215200344
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: three-component reaction ; Indole ; isatin ; reusable ; nanocatalyst ; iron catalysts
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test