Skip to content
2000
Volume 22, Issue 11
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

A novel and efficient method for synthesizing various quinoxaline derivatives has been developed, utilizing rainwater as both a solvent and a catalyst. This approach represents a significant advancement in green chemistry, as it combines simplicity, rapidity, and convenience while avoiding the need for toxic or expensive reagents. The synthesis involves the condensation reaction of aromatic 1,2-diamines with aromatic 1,2-dicarbonyl compounds. Traditionally, these reactions require specialized solvents and catalysts, but in this method, rainwater serves a dual function, streamlining the process and minimizing environmental impact. The use of rainwater not only simplifies the reaction setup but also provides an eco-friendly alternative to conventional organic solvents. The condensation leads to the formation of quinoxaline derivatives, a class of compounds known for their diverse biological and pharmacological activities. The reaction proceeds smoothly at ambient temperature, significantly reducing the energy requirements typically associated with chemical syntheses. This innovative synthesis method demonstrates the potential of using natural resources like rainwater in chemical reactions, contributing to sustainable practices in the field of organic synthesis. The versatility of the approach allows for the preparation of a variety of quinoxalines, offering promising applications in medicinal chemistry and material science. The rapid and straightforward process opens new avenues for the synthesis of quinoxalines, showcasing the potential of rainwater as a green solvent and catalyst in synthetic chemistry.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786365259250424111731
2025-11-01
2026-01-02
Loading full text...

Full text loading...

References

  1. KitanosonoT. MasudaK. XuP. KobayashiS. Chem. Rev.2018118267974610.1021/acs.chemrev.7b00417 29218984
    [Google Scholar]
  2. Cortes-ClergetM. YuJ. KincaidJ.R.A. WaldeP. GallouF. LipshutzB.H. Chem. Sci. (Camb.)202112124237426610.1039/D0SC06000C
    [Google Scholar]
  3. KitanosonoT. obayashiS. Asia Eur. J.20202694089429
    [Google Scholar]
  4. BanikB.K. ManhasM.S. BoseA.K. J. Org. Chem.199459174714471610.1021/jo00096a004
    [Google Scholar]
  5. BanikB.K. ManhasM.S. BoseA.K. Tetrahedron Lett.199738295077508010.1016/S0040‑4039(97)01130‑1
    [Google Scholar]
  6. BanikB.K. ZegrockaO. ManhasM.S. BoseA.K. Heterocycles19974617317610.3987/COM‑97‑S66
    [Google Scholar]
  7. MukhopadhyayC. BeckerF.F. BanikB.K. J. Chem. Res.200128283110.3184/030823401103168181
    [Google Scholar]
  8. SamajdarS. BasuM.K. BeckerF.F. BanikB.K. Tetrahedron Lett.200142274425442710.1016/S0040‑4039(01)00752‑3
    [Google Scholar]
  9. BasuM.K. SamajdarS. BeckerF.F. BanikB.K. Synlett2002200220319032110.1055/s‑2002‑19774
    [Google Scholar]
  10. BanikB.K. SamajdarS. BanikI. J. Org. Chem.200469121321610.1021/jo035200i 14703403
    [Google Scholar]
  11. BanikB.K. ChapaM. MarquezJ. CardonaM. Tetrahedron Lett.200546132341234310.1016/j.tetlet.2005.01.176
    [Google Scholar]
  12. BanikB.K. FernandezM. AlvarezC. Tetrahedron Lett.200546142479248210.1016/j.tetlet.2005.02.044
    [Google Scholar]
  13. BanikB.K. CardonaM. Tetrahedron Lett.2006477385738710.1016/j.tetlet.2006.07.150
    [Google Scholar]
  14. BanikB.K. GarciaI. MoralesF.R. AguilarC. Heterocycl. Commun.2007132-310911210.1515/HC.2007.13.2‑3.109
    [Google Scholar]
  15. BanikB.K. ZegrockaO. ManhasM.S. BoseA.K. Heterocycles2009782443245410.3987/COM‑09‑11729
    [Google Scholar]
  16. BandyopadhyayD. RiveraG. SalinasI. AguilarH. BanikB.K. Molecules20101521082108810.3390/molecules15021082 20335963
    [Google Scholar]
  17. BandyopadhyayD. MukherjeeS. BanikB.K. Molecules20101542520252510.3390/molecules15042520 20428061
    [Google Scholar]
  18. BandyopadhyayD. MukherjeeS. RodriguezR.R. BanikB.K. Molecules20101564207421210.3390/molecules15064207 20657435
    [Google Scholar]
  19. BanikB.K. ManhasM.S. Tetrahedron20126852107691077910.1016/j.tet.2012.01.078
    [Google Scholar]
  20. BandyopadhyayD. CruzJ. YadavR.N. BanikB.K. Molecules20121710115701158410.3390/molecules171011570 23023683
    [Google Scholar]
  21. ParvatkarP. PrameswaranP.S.D. BandyopadhyayS. BanikB.K. Curr. Microw. Chem.2017201723824
    [Google Scholar]
  22. ParvatkarP.T. ManetschR. BanikB.K. Chem. Asian J.201914163010.1002/asia.201801237 30259704
    [Google Scholar]
  23. SamajdarS. BeckerF.F. BanikB.K. Synth. Commun.200131172691269510.1081/SCC‑100105397
    [Google Scholar]
  24. SrivastavaN. BanikB.K. J. Org. Chem.20036862109211410.1021/jo026550s 12636368
    [Google Scholar]
  25. BanikB.K. AdlerD. NguyenP. SrivastavaN. Heterocycles20036110110410.3987/COM‑03‑S63
    [Google Scholar]
  26. BanikB.K. BanikI. RenteriaM. DasguptaS.K. Tetrahedron Lett.200546152643264510.1016/j.tetlet.2005.02.103
    [Google Scholar]
  27. BanikB.K. GarciaI. MoralesF. Heterocycles20077191992410.3987/COM‑06‑10957
    [Google Scholar]
  28. BanikB.K. ReddyA.T. DattaA. MukhopadhyayC. Tetrahedron Lett.200748417392739410.1016/j.tetlet.2007.08.007
    [Google Scholar]
  29. RiveraS. BandyopadhyayD. BanikB.K. Tetrahedron Lett.200950395445544810.1016/j.tetlet.2009.06.002
    [Google Scholar]
  30. IglesiasL. AguilarC. BandyopadhyayD. BanikB.K. Synth. Commun.201040243678368210.1080/00397910903531631
    [Google Scholar]
  31. BanikA. BattaS. BandyopadhyayD. BanikB.K. Molecules201015118205821310.3390/molecules15118205 21076387
    [Google Scholar]
  32. ShaikhA.L. BanikB.K. Helv. Chim. Acta201295583984410.1002/hlca.201100202
    [Google Scholar]
  33. BandyopadhyayS. MukherjeeJ. BanikB.K. GranadosJ.S. Eur. J. Med. Chem.201250209215
    [Google Scholar]
  34. BandyopadhyayD. MaldonadoS. BanikB.K. Molecules20121732643266210.3390/molecules17032643 22391599
    [Google Scholar]
  35. BandyopadhyayD. CruzJ. BanikB.K. Tetrahedron20126852106861069510.1016/j.tet.2012.06.009
    [Google Scholar]
  36. BandyopadhyayD. CruzJ. MoralesL.D. ArmanH.D. CuateE. LeeY.S. BanikB.K. KimD.J. Future Med. Chem.20135121377139010.4155/fmc.13.101 23919549
    [Google Scholar]
  37. YadavR. ReddyA. BanikB.K. Curr. Microw. Chem.201419497
    [Google Scholar]
  38. YadavR. ReddyA. BanikB.K. Current Organocatalysis202291143310.2174/2213337208666210719102301
    [Google Scholar]
  39. YadavR.N. Current Organocatalysis2023104276282
    [Google Scholar]
  40. KumarS. BawaS. GuptaH. Mini Rev. Med. Chem.200991648165410.2174/138955709791012247
    [Google Scholar]
  41. MatadaB.S. PattanashettarR. YernaleN.G. Bioorg. Med. Chem.20213211597310.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  42. Quinaoxaline Scafold CartaA. CoronaP. LorigaM. Curr. Med. Chem.2005122259227210.2174/0929867054864831 16178784
    [Google Scholar]
  43. BeckerF.F. BanikB.K. Bioorg. Med. Chem. Lett.19988202877288010.1016/S0960‑894X(98)00520‑4 9873640
    [Google Scholar]
  44. BeckerF.F. MukhopadhyayC. HackfeldL. BanikI. BanikB.K. Bioorg. Med. Chem.20008122693269910.1016/S0968‑0896(00)00213‑3 11131160
    [Google Scholar]
  45. BanikB.K. BeckerF.F. Bioorg. Med. Chem.20019359360510.1016/S0968‑0896(00)00297‑2 11310593
    [Google Scholar]
  46. BanikB. BeckerF. Curr. Med. Chem.20018121513153310.2174/0929867013372120 11562280
    [Google Scholar]
  47. BanikB.K. BeckerF.F. BanikI. Bioorg. Med. Chem.200412102523252810.1016/j.bmc.2004.03.033 15110834
    [Google Scholar]
  48. BanikI. BeckerF.F. BanikB.K. J. Med. Chem.2003461121510.1021/jm0255825 12502355
    [Google Scholar]
  49. KamalA. ReddyK. DevaiahV. ShankaraiahN. RaoM. Mini Rev. Med. Chem.200661718910.2174/138955706775197839 16457633
    [Google Scholar]
  50. SrinivasC. KumarC.N.S.S.P. RaoV.J. PalaniappanS. J. Mol. Catal. Chem.20072651-222723010.1016/j.molcata.2006.10.018
    [Google Scholar]
  51. ZhouJ.F. GongG.X. ZhiS.J. Synth. Commun.2009393743375410.1080/00397910902838862
    [Google Scholar]
  52. MoreS.V. SastryM.N.V. YaoC.F. Green Chem.200681919510.1039/B510677J
    [Google Scholar]
  53. DinkarR. YadavM. JainA. KumarN. MaliS. KumarS. SharmaS. MathewB. Russ. J. Bioorg. Chem.2024502013202310.1134/S1068162024050169
    [Google Scholar]
/content/journals/loc/10.2174/0115701786365259250424111731
Loading
/content/journals/loc/10.2174/0115701786365259250424111731
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): aromatic amines; dicarbonyl compounds; green chemistry; quinoxalines; Rainwater
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test