Skip to content
2000
image of A Unique and Innovative Rainwater-assisted Synthesis of Quinoxalines

Abstract

A novel and efficient method for synthesizing various quinoxaline derivatives has been developed, utilizing rainwater as both a solvent and a catalyst. This approach represents a significant advancement in green chemistry, as it combines simplicity, rapidity, and convenience while avoiding the need for toxic or expensive reagents. The synthesis involves the condensation reaction of aromatic 1,2-diamines with aromatic 1,2-dicarbonyl compounds. Traditionally, these reactions require specialized solvents and catalysts, but in this method, rainwater serves a dual function, streamlining the process and minimizing environmental impact. The use of rainwater not only simplifies the reaction setup but also provides an eco-friendly alternative to conventional organic solvents. The condensation leads to the formation of quinoxaline derivatives, a class of compounds known for their diverse biological and pharmacological activities. The reaction proceeds smoothly at ambient temperature, significantly reducing the energy requirements typically associated with chemical syntheses. This innovative synthesis method demonstrates the potential of using natural resources like rainwater in chemical reactions, contributing to sustainable practices in the field of organic synthesis. The versatility of the approach allows for the preparation of a variety of quinoxalines, offering promising applications in medicinal chemistry and material science. The rapid and straightforward process opens new avenues for the synthesis of quinoxalines, showcasing the potential of rainwater as a green solvent and catalyst in synthetic chemistry.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786365259250424111731
2025-04-30
2025-09-27
Loading full text...

Full text loading...

References

  1. Kitanosono T. Masuda K. Xu P. Kobayashi S. Chem. Rev. 2018 118 2 679 746 10.1021/acs.chemrev.7b00417 29218984
    [Google Scholar]
  2. Cortes-Clerget M. Yu J. Kincaid J.R.A. Walde P. Gallou F. Lipshutz B.H. Chem. Sci. (Camb.) 2021 12 12 4237 4266 10.1039/D0SC06000C
    [Google Scholar]
  3. Kitanosono T. obayashi. S. Asia Eur. J. 2020 26 9408 9429
    [Google Scholar]
  4. Banik B.K. Manhas M.S. Bose A.K. J. Org. Chem. 1994 59 17 4714 4716 10.1021/jo00096a004
    [Google Scholar]
  5. Banik B.K. Manhas M.S. Bose A.K. Tetrahedron Lett. 1997 38 29 5077 5080 10.1016/S0040‑4039(97)01130‑1
    [Google Scholar]
  6. Banik B.K. Zegrocka O. Manhas M.S. Bose A.K. Heterocycles 1997 46 173 176 10.3987/COM‑97‑S66
    [Google Scholar]
  7. Mukhopadhyay C. Becker F.F. Banik B.K. J. Chem. Res. 2001 28 28 31 10.3184/030823401103168181
    [Google Scholar]
  8. Samajdar S. Basu M.K. Becker F.F. Banik B.K. Tetrahedron Lett. 2001 42 27 4425 4427 10.1016/S0040‑4039(01)00752‑3
    [Google Scholar]
  9. Basu M.K. Samajdar S. Becker F.F. Banik B.K. Synlett 2002 2002 2 0319 0321 10.1055/s‑2002‑19774
  10. Banik B.K. Samajdar S. Banik I. J. Org. Chem. 2004 69 1 213 216 10.1021/jo035200i 14703403
    [Google Scholar]
  11. Banik B.K. Chapa M. Marquez J. Cardona M. Tetrahedron Lett. 2005 46 13 2341 2343 10.1016/j.tetlet.2005.01.176
    [Google Scholar]
  12. Banik B.K. Fernandez M. Alvarez C. Tetrahedron Lett. 2005 46 14 2479 2482 10.1016/j.tetlet.2005.02.044
    [Google Scholar]
  13. Banik B.K. Cardona M. Tetrahedron Lett. 2006 47 7385 7387 10.1016/j.tetlet.2006.07.150
    [Google Scholar]
  14. Banik B.K. Garcia I. Morales F.R. Aguilar C. Heterocycl. Commun. 2007 13 2-3 109 112 10.1515/HC.2007.13.2‑3.109
    [Google Scholar]
  15. Banik B.K. Zegrocka O. Manhas M.S. Bose A.K. Heterocycles 2009 78 2443 2454 10.3987/COM‑09‑11729
    [Google Scholar]
  16. Bandyopadhyay D. Rivera G. Salinas I. Aguilar H. Banik B.K. Molecules 2010 15 2 1082 1088 10.3390/molecules15021082 20335963
    [Google Scholar]
  17. Bandyopadhyay D. Mukherjee S. Banik B.K. Molecules 2010 15 4 2520 2525 10.3390/molecules15042520 20428061
    [Google Scholar]
  18. Bandyopadhyay D. Mukherjee S. Rodriguez R.R. Banik B.K. Molecules 2010 15 6 4207 4212 10.3390/molecules15064207 20657435
    [Google Scholar]
  19. Banik B.K. Manhas M.S. Tetrahedron 2012 68 52 10769 10779 10.1016/j.tet.2012.01.078
    [Google Scholar]
  20. Bandyopadhyay D. Cruz J. Yadav R.N. Banik B.K. Molecules 2012 17 10 11570 11584 10.3390/molecules171011570 23023683
    [Google Scholar]
  21. Parvatkar P. Prameswaran P.S.D. Bandyopadhyay S. Banik B.K. Curr. Microw. Chem. 2017 2017 238 24
    [Google Scholar]
  22. Parvatkar P.T. Manetsch R. Banik B.K. Chem. Asian J. 2019 14 1 6 30 10.1002/asia.201801237 30259704
    [Google Scholar]
  23. Samajdar S. Becker F.F. Banik B.K. Synth. Commun. 2001 31 17 2691 2695 10.1081/SCC‑100105397
    [Google Scholar]
  24. Srivastava N. Banik B.K. J. Org. Chem. 2003 68 6 2109 2114 10.1021/jo026550s 12636368
    [Google Scholar]
  25. Banik B.K. Adler D. Nguyen P. Srivastava N. Heterocycles 2003 61 101 104 10.3987/COM‑03‑S63
    [Google Scholar]
  26. Banik B.K. Banik I. Renteria M. Dasgupta S.K. Tetrahedron Lett. 2005 46 15 2643 2645 10.1016/j.tetlet.2005.02.103
    [Google Scholar]
  27. Banik B.K. Garcia I. Morales F. Heterocycles 2007 71 919 924 10.3987/COM‑06‑10957
    [Google Scholar]
  28. Banik B.K. Reddy A.T. Datta A. Mukhopadhyay C. Tetrahedron Lett. 2007 48 41 7392 7394 10.1016/j.tetlet.2007.08.007
    [Google Scholar]
  29. Rivera S. Bandyopadhyay D. Banik B.K. Tetrahedron Lett. 2009 50 39 5445 5448 10.1016/j.tetlet.2009.06.002
    [Google Scholar]
  30. Iglesias L. Aguilar C. Bandyopadhyay D. Banik B.K. Synth. Commun. 2010 40 24 3678 3682 10.1080/00397910903531631
    [Google Scholar]
  31. Banik A. Batta S. Bandyopadhyay D. Banik B.K. Molecules 2010 15 11 8205 8213 10.3390/molecules15118205 21076387
    [Google Scholar]
  32. Shaikh A.L. Banik B.K. Helv. Chim. Acta 2012 95 5 839 844 10.1002/hlca.201100202
    [Google Scholar]
  33. Bandyopadhyay S. Mukherjee J. Banik B.K. Granados J.S. Eur. J. Med. Chem. 2012 50 209 215
    [Google Scholar]
  34. Bandyopadhyay D. Maldonado S. Banik B.K. Molecules 2012 17 3 2643 2662 10.3390/molecules17032643 22391599
    [Google Scholar]
  35. Bandyopadhyay D. Cruz J. Banik B.K. Tetrahedron 2012 68 52 10686 10695 10.1016/j.tet.2012.06.009
    [Google Scholar]
  36. Bandyopadhyay D. Cruz J. Morales L.D. Arman H.D. Cuate E. Lee Y.S. Banik B.K. Kim D.J. Future Med. Chem. 2013 5 12 1377 1390 10.4155/fmc.13.101 23919549
    [Google Scholar]
  37. Yadav R. Reddy A. Banik B.K. Curr. Microw. Chem. 2014 1 94 97
    [Google Scholar]
  38. Yadav R. Reddy A. Banik B.K. Curr. Organocatal. 2022 9 1 14 33 10.2174/2213337208666210719102301
    [Google Scholar]
  39. Yadav R.N. Curr. Organocatal. 2023 10 4 276 282
    [Google Scholar]
  40. Kumar S. Bawa S. Gupta H. Mini Rev.Med. Chem., 2009 9 1648 1654 10.2174/138955709791012247
    [Google Scholar]
  41. Matada B.S. Pattanashettar R. Yernale N.G. Bioorg. Med. Chem. 2021 32 115973 10.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  42. Quinaoxaline Scafold Carta A. Corona P. Loriga M. Curr. Med. Chem. 2005 12 2259 2272 10.2174/0929867054864831 16178784
    [Google Scholar]
  43. Becker F.F. Banik B.K. Bioorg. Med. Chem. Lett. 1998 8 20 2877 2880 10.1016/S0960‑894X(98)00520‑4 9873640
    [Google Scholar]
  44. Becker F.F. Mukhopadhyay C. Hackfeld L. Banik I. Banik B.K. Bioorg. Med. Chem. 2000 8 12 2693 2699 10.1016/S0968‑0896(00)00213‑3 11131160
    [Google Scholar]
  45. Banik B.K. Becker F.F. Bioorg. Med. Chem. 2001 9 3 593 605 10.1016/S0968‑0896(00)00297‑2 11310593
    [Google Scholar]
  46. Banik B. Becker F. Curr. Med. Chem. 2001 8 12 1513 1533 10.2174/0929867013372120 11562280
    [Google Scholar]
  47. Banik B.K. Becker F.F. Banik I. Bioorg. Med. Chem. 2004 12 10 2523 2528 10.1016/j.bmc.2004.03.033 15110834
    [Google Scholar]
  48. Banik I. Becker F.F. Banik B.K. J. Med. Chem. 2003 46 1 12 15 10.1021/jm0255825 12502355
    [Google Scholar]
  49. Kamal A. Reddy K. Devaiah V. Shankaraiah N. Rao M. Mini Rev. Med. Chem. 2006 6 1 71 89 10.2174/138955706775197839 16457633
    [Google Scholar]
  50. Srinivas C. Kumar C.N.S.S.P. Rao V.J. Palaniappan S. J. Mol. Catal. Chem. 2007 265 1-2 227 230 10.1016/j.molcata.2006.10.018
    [Google Scholar]
  51. Zhou J.F. Gong G.X. Zhi S.J. Synth. Commun. 2009 39 3743 3754 10.1080/00397910902838862
    [Google Scholar]
  52. More S.V. Sastry M.N.V. Yao C.F. Green Chem. 2006 8 1 91 95 10.1039/B510677J
    [Google Scholar]
  53. Dinkar R. Yadav M. Jain A. Kumar N. Mali S. Kumar S. Sharma S. Mathew B. Russ. J. Bioorganic Chem. 2024 50 2013 2023 10.1134/S1068162024050169
    [Google Scholar]
/content/journals/loc/10.2174/0115701786365259250424111731
Loading
/content/journals/loc/10.2174/0115701786365259250424111731
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: aromatic amines ; quinoxalines ; Rainwater ; dicarbonyl compounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test