Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Isoalloxazines are the essential cofactors of flavoproteins, which are responsible for the different redox reactions in various biological processes. They can be efficiently synthesized using -substituted 2-nitrophenylamines as a precursor. In the present communication, we report a simple and efficient method for the synthesis of -substituted 2-nitrophenylamines in DABCO-based ionic liquids. The method offers the use of DABCO-based ionic liquids as non-conventional catalysts, which eliminates the use of any additional base with excellent yields in short reaction time, easy product isolation, high purity, and recyclability.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786359672241226141225
2025-01-14
2025-09-04
Loading full text...

Full text loading...

References

  1. DemmerJ.K. HuangH. WangS. DemmerU. ThauerR.K. ErmlerU. J. Biol. Chem.201529036219852199510.1074/jbc.M115.656520 26139605
    [Google Scholar]
  2. KayasthaK. VittS. BuckelW. ErmlerU. Arch. Biochem. Biophys.202170110879610.1016/j.abb.2021.108796 33609536
    [Google Scholar]
  3. RomeroE. CastellanosG.J.R. GaddaG. FraaijeM.W. MatteviA. Chem. Rev.201811841742176910.1021/acs.chemrev.7b00650 29323892
    [Google Scholar]
  4. EbrechtA.C. van der BerghN. HarrisonS.T.L. SmitM.S. SewellB.T. OppermanD. J. Sci. Rep.2019912008810.1038/s41598‑019‑56516‑6 31882753
    [Google Scholar]
  5. FreemanS.L. MartelA. DevosJ.M. BasranJ. RavenE.L. RobertsG.C.K. J. Biol. Chem.2018293145210521910.1074/jbc.RA118.001941 29475945
    [Google Scholar]
  6. SugishimaM. SatoH. HigashimotoY. HaradaJ. WadaK. FukuyamaK. NoguchiM. Proc. Natl. Acad. Sci.201411172524252910.1073/pnas.1322034111 24550278
    [Google Scholar]
  7. SawadaK. InoueT. SawadaY. MizutaniT. Front. Pharmacol.20211276280710.3389/fphar.2021.762807 34803707
    [Google Scholar]
  8. PolitanoF. MaganoG.A.K. LeadbeaterN.E. Molecules20192420363910.3390/molecules24203639 31600970
    [Google Scholar]
  9. ChauhanS.M.S. SinghR. Geetanjali. Synth. Commun.2003331628992906
    [Google Scholar]
  10. AnonU.K. Expert Opin. Ther. Pat.200212460160310.1517/13543776.12.4.601
    [Google Scholar]
  11. ClandeP. CarineE. StephaneR. GeraldB. ClauddeJ.G.B. GerardH. J. Chem. Soc., Dalton Trans.20003999
    [Google Scholar]
  12. WolfeJ.P. TomoriH. SadighiJ.P. YinJ. BuchwaldS.L. J. Org. Chem.20006541158117410.1021/jo991699y
    [Google Scholar]
  13. EmotoT. KubosakiN. YamagiwaY. KamikawaT. Tetrahedron Lett.200041335535810.1016/S0040‑4039(99)02061‑4
    [Google Scholar]
  14. StaabH.A. KirschP. ZippliesM.F. WeingesA. KriegerC. Chem. Ber.199412791653166510.1002/cber.19941270917
    [Google Scholar]
  15. YanoY. OhyaE. J. Chem. Soc., Perkin Trans. 21984771227123210.1039/p29840001227
    [Google Scholar]
  16. XuZ.B. LuY. GuoZ.R. Synlett20034564566
    [Google Scholar]
  17. Ambika; Singh, P.P.Catal. Lett.202115222882301
    [Google Scholar]
  18. Ambika; Singh, P.P.Curr. Org. Chem.202125332350
    [Google Scholar]
  19. CabreraM.I. Ind. Eng. Chem. Res.20216051185451855910.1021/acs.iecr.1c02681
    [Google Scholar]
  20. BlaserH.U. Chimia2010641-2656810.2533/chimia.2010.65 21137688
    [Google Scholar]
  21. GuptaS. FernandesR. PatelR. SpreitzerM. PatelN. Appl. Catal. A Gen.202366111925410.1016/j.apcata.2023.119254
    [Google Scholar]
  22. AlbersP. PietschJ. ParkerS.F. J. Mol. Catal. Chem.20011731-227528610.1016/S1381‑1169(01)00154‑6
    [Google Scholar]
  23. CornilsB. HerrmannW.A. J. Catal.20032161-2233110.1016/S0021‑9517(02)00128‑8
    [Google Scholar]
  24. SheldonR.A. Green Chem.20079121273128310.1039/b713736m
    [Google Scholar]
  25. SheldonR.A.J. Royal Soc. Interface2016131162016008710.1098/rsif.2016.0087 27009181
    [Google Scholar]
  26. VekariyaR.L. J. Mol. Liq.2017227446010.1016/j.molliq.2016.11.123
    [Google Scholar]
  27. SinghP.P. Ambika.Curr. Org. Synth.202219890592210.2174/1570179419666220303110933 36267047
    [Google Scholar]
  28. ÜnlüA.E. ArıkayaA. TakaçS. Green Process. Synth.20198135537210.1515/gps‑2019‑0003
    [Google Scholar]
  29. SteinrückH.P. WasserscheidP. Catal. Lett.2015145138039710.1007/s10562‑014‑1435‑x
    [Google Scholar]
  30. PârvulescuV.I. HardacreC. Chem. Rev.200710762615266510.1021/cr050948h 17518502
    [Google Scholar]
  31. ElgharbawyA.A. RiyadiF.A. AlamM.Z. MoniruzzamanM. J. Mol. Liq.201825115016610.1016/j.molliq.2017.12.050
    [Google Scholar]
  32. FreemantleM. Chem. Eng. News19987613323710.1021/cen‑v076n013.p032
    [Google Scholar]
  33. HagiwaraR. ItoY. J. Fluor. Chem.2000105222122710.1016/S0022‑1139(99)00267‑5
    [Google Scholar]
  34. SowmiahS. ChengC.I. ChuY.H. Curr. Org. Synth.20129749510.2174/157017912798889116
    [Google Scholar]
  35. ChakrabortiA.K. RoyS.R. J. Am. Chem. Soc.2009131206902690310.1021/ja900076a 19413313
    [Google Scholar]
  36. SinghP.P. KanodiaS. Ambika. Mini Rev. Org. Chem.2024217742763
    [Google Scholar]
  37. YingA. LiZ. YangJ. LiuS. XuS. YanH. WuC. J. Org. Chem.20147965106516
    [Google Scholar]
  38. BoruahP.R. KoiriM.J. BoraU. SarmaD. Tetrahedron Lett.20145524232425
    [Google Scholar]
  39. IshtiaqM. KhanM.A. AhmedS. AliS. Rashidaa.M. IftikharS. MoinS.T. HameedA. J. Mol. Struct.2022126813363810.1016/j.molstruc.2022.133638
    [Google Scholar]
  40. JangidD.K. Curr. Green Chem.20207214616210.2174/2213346107666191227101538
    [Google Scholar]
  41. YingA. NiY. XuS. LiuS. YangJ. LiR. Ind. Eng. Chem. Res.201453145678568210.1021/ie500440w
    [Google Scholar]
  42. SahibaN. SethiyaA. TeliP. AgarwalS. ACS Omega20238658775884 36816668
    [Google Scholar]
  43. PadviS.A. DalalD.S. Curr. Green Chem.20207110511910.2174/2213346107666200115153051
    [Google Scholar]
  44. AnsS.A.M. Al MakoneS.S. SaifanA.A.A. PinateP.S. J. Chem. Lett.2024590107
    [Google Scholar]
  45. BugaenkoD.I. KarchavaA.V. YurovskayaM.A. Chem. Heterocycl. Compd.2020563279298
    [Google Scholar]
  46. KonwaraM. KhupseN.D. SaikiaP.J. SarmaD. J. Chem. Sci.201813053
    [Google Scholar]
  47. ArafaW.A.A. MouradA.K. R. Soc. Open Sci.20196719099710.1098/rsos.190997 31417768
    [Google Scholar]
  48. Ambika; Singh, P.P.; Chauhan, S.M.S.Synth. Commun.20083892893610.1080/00397910701845480
    [Google Scholar]
  49. SinghP.P. Ambika ChauhanS.M.S. New J. Chem.201236650655
    [Google Scholar]
  50. BrunnetJ.F. ZahlerR.E. Chem. Rev.195149227341210.1021/cr60153a002
    [Google Scholar]
  51. TerrierF. Chem. Rev.19828227715210.1021/cr00048a001
    [Google Scholar]
  52. ChiappeC. MelaiB. SanzoneA. ValentiniG. Pure Appl. Chem.2009811120352043
    [Google Scholar]
  53. KazockJ.Y. TaggouguiM. CarreB. WillmannP. LemordantD. Synthesis20072437763778
    [Google Scholar]
  54. HaiH.L. QiuF.L. YingA.G. XuS.L. Chin. Chem. Lett.201526377381
    [Google Scholar]
  55. YangZ.Z. HeL.N. PengS.Y. LiuA.H. Green Chem.201012101850185410.1039/c0gc00286k
    [Google Scholar]
/content/journals/loc/10.2174/0115701786359672241226141225
Loading
/content/journals/loc/10.2174/0115701786359672241226141225
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test