Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Pyrazolidine-3,5-dione (PZD) derivatives have emerged as a class of compounds with notable pharmacological potential, drawing significant interest due to their broad range of therapeutic applications. This review consolidates data spanning from 1953 to 2004, providing a comprehensive overview of their synthesis, biological activities, and mechanisms of action while underscoring their diverse therapeutic promise. The synthesis of PZD derivatives has evolved with the use of advanced methodologies such as reactions with malonic acid, substituted hydrazines, benzothiazoles, and aryl aldehydes, along with modern techniques like microwave-assisted reactions and solid-phase synthesis, which enhance efficiency and promote structural diversity. These derivatives exhibit a wide array of pharmacological activities, including anti-inflammatory, analgesic, antipyretic, antimicrobial, anticancer, antidiabetic, and neuroprotective effects, highlighting their versatile therapeutic potential. Furthermore, PZD derivatives demonstrate efficacy as insecticides, miticides, and herbicides, suggesting their relevance in agricultural applications. The mechanisms of action behind their therapeutic effects include the inhibition of critical enzymes involved in amino acid biosynthesis and cell wall formation in microorganisms, as well as modulation of receptors, such as PPARγ and the Farnesoid X receptor. Several PZD derivatives also exhibit significant antimicrobial, antifungal, and antitubercular properties, positioning them as potential candidates for the treatment of bacterial and fungal infections. Additionally, some derivatives have shown promise as anticonvulsants, Dyrk1A inhibitors, and enhancers of sensitivity to antimicrobials, demonstrating their broad therapeutic versatility. Despite the promising pharmacological activities, further research is required to optimize the pharmacokinetic profiles of PZD derivatives, minimize potential side effects, and expand their clinical applications. This work will be essential in advancing PZD derivatives as effective treatments for a range of diseases, making them valuable candidates for future drug development.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786351677250217075130
2025-02-24
2025-09-05
Loading full text...

Full text loading...

References

  1. BüchiJ. AmmannJ. LieberherrR. EichenbergerE. Helv. Chim. Acta1953361758510.1002/hlca.19530360112
    [Google Scholar]
  2. TawabS.A. MustafaA. KiraM. Nature1960186471916516610.1038/186165a013837090
    [Google Scholar]
  3. MustafaA. KiraM. NakhlaS. J. Org. Chem.19612693389339110.1021/jo01067a090
    [Google Scholar]
  4. KozlovN.S. IsaevaR.K. Chem. Heterocycl. Compd.19661325225310.1007/BF00473602
    [Google Scholar]
  5. KozlovN.S. KiselevB.I. Chem. Heterocycl. Compd.19672324824910.1007/BF00742357
    [Google Scholar]
  6. KozlovN.S. PakV.D. NugumanovZ. Z. Chem. Heterocycl. Compd.19706217918110.1007/BF00474992
    [Google Scholar]
  7. KozlovN.S. MisenzhnikovV.V. GaisinovichM.S. Chem. Heterocycl. Compd.19661331331410.1007/BF00473621
    [Google Scholar]
  8. HalderP. MhaskeS.B. Chem. Commun.2023598242824510.1039/D3CC02078A37313715
    [Google Scholar]
  9. KornetM.J. ThorstensonJ.H. LubawyW.C. J. Pharm. Sci.19746371090109310.1002/jps.26006307124850600
    [Google Scholar]
  10. BhuiyanM.M.H. RahmanK.M.M. HossainM.I. NaserM.A. ShumiW. J. Appl. Sci. Res.200512218222
    [Google Scholar]
  11. GilbertA.M. FailliA. ShumskyJ. YangY. SeverinA. SinghG. HuW. KeeneyD. PetersenP.J. KatzA.H. J. Med. Chem.200649206027603610.1021/jm060499t17004716
    [Google Scholar]
  12. AhnJ.H. ShinM.S. JunM.A. JungS.H. KangS.K. KimK.R. RheeS.D. KangN.S. KimS.Y. SohnS.K. KimS.G. JinM.S. LeeJ.O. CheonH.G. KimS.S. Bioorg. Med. Chem. Lett.20071792622262810.1016/j.bmcl.2007.01.11117331715
    [Google Scholar]
  13. PedersenA.K. JakobsenP. Br. J. Clin. Pharmacol.198111659760310.1111/j.1365‑2125.1981.tb01176.x7272176
    [Google Scholar]
  14. ChiouaM. SamadiA. SorianoE. LozachO. MeijerL. Marco-ContellesJ. Bioorg. Med. Chem. Lett.200919164566456910.1016/j.bmcl.2009.06.09919615897
    [Google Scholar]
  15. BomburnU.S. Patent 0220188 A12004
    [Google Scholar]
  16. DickM. ErlenkampG. NguyenG.T.T. FörsterK. GrothG. GohlkeH. FEBS Lett.2017591203369337710.1002/1873‑3468.1284228889573
    [Google Scholar]
  17. BarnesB.J. IzydoreR.A. EakinA.E. HallI.H. J. Pharmacol. Exp. Ther.2001298279079611454943
    [Google Scholar]
  18. TiwariA. SinghA. J. Adv. Pharm. Technol. Res.201451414710.4103/2231‑4040.12699324696816
    [Google Scholar]
  19. Fretz,U.S. Patent 0037846 A12007
    [Google Scholar]
  20. HussainS. MuhammadS. TalibS.H. AkkurtM. MahsudA. YangZ. WangH. LuZ. J. Mol. Struct.20241296Part 113683410.1016/j.molstruc.2023.136834
    [Google Scholar]
  21. Shekhar YadavC. AzadI. Rahman KhanA. NasibullahM. AhmadN. HansdaD. Nusrat AliS. ShrivastavK. AkilM. LohaniM.B. Results Chem.2024710132610.1016/j.rechem.2024.101326
    [Google Scholar]
  22. TandonV.K. YadavD.B. ChaturvediA.K. ShuklaP.K. Bioorg. Med. Chem. Lett.200515133288329110.1016/j.bmcl.2005.04.06615913995
    [Google Scholar]
  23. LitvinovY.M. ShestopalovA.A. RodinovskayaL.A. ShestopalovA.M. J. Comb. Chem.200911591491910.1021/cc900076j19711896
    [Google Scholar]
  24. KoyamaT. IzawaY. WadaH. MakitaT. HashimotoY. EnomotoM. Toxicol. Appl. Pharmacol.198264225527010.1016/0041‑008X(82)90222‑87123554
    [Google Scholar]
  25. AndrewsF.M. ReinemeyerC.R. LonghoferS.L. AAEP Proceedings200955478479
    [Google Scholar]
  26. TheobaldR.S. Five-Membered Heterocyclic Compounds with Two Nitrogen Atoms in the Ring. In: Rodd’s Chemistry of Carbon Compounds: A Modern Comprehensive Treatise.2nd ed SainsburyM. AmsterdamElsevier1964Vol. 4124210.1016/B978‑044453345‑6.50717‑3
    [Google Scholar]
  27. JuckerE. Angew. Chem.19597132110.1002/ange.19590711002
    [Google Scholar]
  28. BatyJ.D. EvansD.A.P. J. Pharm. Pharmacol.1973251838410.1111/j.2042‑7158.1973.tb09124.x4146209
    [Google Scholar]
  29. LoewD. SchusterO. KnoellH.E. GraulE.H. Z. Rheumatol.19854441861924050150
    [Google Scholar]
  30. HarounM. Med. Chem.202016681282510.2174/157340641666619122711371631880249
    [Google Scholar]
  31. DengG. LiW. ShenJ. JiangH. ChenK. LiuH. Bioorg. Med. Chem. Lett.200818205497550210.1016/j.bmcl.2008.09.02718815030
    [Google Scholar]
  32. TiwariA. SinghA. Ovidius Univ Ann Che.201324151210.2478/auoc‑2013‑0001
    [Google Scholar]
  33. CauvinC. Le BourdonnecB. NorbergB. HénichartJ.P. DurantF. Acta Crystallogr. C200157111330133210.1107/S010827010101350611706265
    [Google Scholar]
  34. GodaF.E. MaaroufA.R. El-BendaryE.R. Saudi Pharm. J.2003113111117
    [Google Scholar]
  35. NadipourF. SalahvarziS. DadgarZ. Curr. Bioact. Compd.2024202e25082322038010.2174/1573407219666230825141438
    [Google Scholar]
  36. LoganathanV. RadhakrishnanS. AhamedA. GurusamyR. H Abd-ElkaderO. IdhayadhullaA. PLoS One2024199e029823210.1371/journal.pone.029823239298396
    [Google Scholar]
  37. ChaubeyR. JasujaN.D. GargG. Int. J. Pharm. Sci. Res.2017852249225710.13040/IJPSR.0975‑8232.8(5).2249‑57
    [Google Scholar]
  38. TiwariA. TiwariV. KhanZ. J. Mol. Struct.2025133014148110.1055/s‑0031‑130019810758780
    [Google Scholar]
  39. IsaadJ. MalekF. El AchariA. Dyes Pigments20129231212122210.1016/j.dyepig.2011.07.023
    [Google Scholar]
  40. MetwallyS.A.M. Abdel MoneimM.I. ElosselyY.A. AwadR.I. Abou-HadeedK. Chem. Heterocycl. Compd.201046442643710.1007/s10593‑010‑0527‑9
    [Google Scholar]
  41. ZicaneD. RavinaI. TetereZ. PetrovaM. Chem. Heterocycl. Compd.200541218719110.1007/s10593‑005‑0125‑4
    [Google Scholar]
  42. MoydeenM. KumarR.S. IdhayadhullaA. ManilalA. Mol. Divers.2019231355310.1007/s11030‑018‑9850‑329974311
    [Google Scholar]
  43. LiangZ. DingX. AiJ. KongX. ChenL. ChenL. LuoC. GengM. LiuH. ChenK. JiangH. Org. Biomol. Chem.201210242143010.1039/C1OB06186K22108637
    [Google Scholar]
  44. SamaunnisaA. MohammedR. VenkataramanaC.H.S. MadhavanV. Int. J. Pharm. Sci. Res.20133422312781
    [Google Scholar]
  45. KarrouchiK. RadiS. RamliY. TaoufikJ. MabkhotY.N. Al-aizariF.A. AnsarM. Molecules201823113410.3390/molecules2301013429329257
    [Google Scholar]
  46. SamalaG. KakanS.S. NallangiR. DeviP.B. SrideviJ.P. SaxenaS. YogeeswariP. SriramD. Int. J. Mycobacteriol.20143211712610.1016/j.ijmyco.2014.02.00626786333
    [Google Scholar]
  47. KaishaO.K.K. TakahashiN. NakagawaH. Patent EP1026159A42000
    [Google Scholar]
  48. SinghR. UpmanyuN. GuptaM. PrasadP. JSM Chem.2015311016
    [Google Scholar]
  49. HeR. LamY. Org. Biomol. Chem.20086122182218610.1039/b802648c18528580
    [Google Scholar]
  50. El-OssailyY.A. MoustafaO.S. IbrahimS.A. ElnagarG.M. MetwallyS.A. Trends Hetero Chem.2013162332
    [Google Scholar]
  51. AlamM.J. AlamO. NaimM.J. NawazF. ManaithiyaA. ImranM. ThabetH.K. AlshehriS. GhoneimM.M. AlamP. ShakeelF. Molecules20222724870810.3390/molecules2724870836557840
    [Google Scholar]
  52. HerrenknechtC. Guernet-NivaudE. LafontO. GuernetM. GueutinC. Can. J. Chem.19886651199120210.1139/v88‑196
    [Google Scholar]
  53. WoodruffM. PolyaJ.B. Aust. J. Chem.19752871583158710.1071/CH9751583
    [Google Scholar]
  54. GuptaM. UpmanyuN. PramanikS. ChandekarA. Int. J. Drug Dev. Res.201132233239
    [Google Scholar]
  55. PirkleW.H. GravelP.L. J. Org. Chem.197843580881510.1021/jo00399a004
    [Google Scholar]
  56. GieshoffT. SiegfriedR. ECS Meeting Abstracts MA,20161321613
    [Google Scholar]
  57. WoodruffM. PolyaJ.B. Aust. J. Chem.197528113314110.1071/CH9750133
    [Google Scholar]
  58. AyreyG. YeomansM.A. J. Radioanal. Chem.197420246347110.1007/BF02514293
    [Google Scholar]
  59. MertS. KasımoğullarıR. İçaT. ÇolakF. AltunA. OkS. Eur. J. Med. Chem.201478869610.1016/j.ejmech.2014.03.03324681068
    [Google Scholar]
  60. RahimizadehM. PordelM. BakavoliM. RezaeianS. SadeghianA. World J. Microbiol. Biotechnol.201026231732110.1007/s11274‑009‑0178‑0
    [Google Scholar]
  61. RagavanR.V. VijayakumarV. KumariN.S. Eur. J. Med. Chem.20104531173118010.1016/j.ejmech.2009.12.04220053480
    [Google Scholar]
  62. KooK.A. KimN.D. ChonY.S. JungM.S. LeeB.J. KimJ.H. SongW.J. Bioorg. Med. Chem. Lett.20091982324232810.1016/j.bmcl.2009.02.06219282176
    [Google Scholar]
  63. KumarH. JainS. Int. J. Pharm. Sci. Res.201341453457
    [Google Scholar]
  64. Abd-EllaA.A. MetwallyS.A. ul-MalikM.A.A. El-OssailyY.A. ElrazekF.M.A. ArefS.A. NaffeaY.A. Abdel-RaheemS.A.A. Current Chemistry Letters202211215717210.5267/j.ccl.2022.2.004
    [Google Scholar]
  65. SamaunnisaA.A. MohammedR. VenkataramanaC.H.S. MadhavanV. Int. J. Pharm. Pharm. Sci.201465
    [Google Scholar]
  66. OroshnikW. MebaneA.D. KarmasG. J. Am. Chem. Soc.19537551050105810.1021/ja01101a013
    [Google Scholar]
  67. AlamO. NaimM.J. NawazF. AlamM.J. AlamP. J. Pharm. Bioallied Sci.20168121710.4103/0975‑7406.17169426957862
    [Google Scholar]
  68. AndersonE.L. CaseyJ.E.Jr GreeneL.C. LaffertyJ.J. ReiffH.E. J. Med. Chem.19647325926810.1021/jm00333a00414204957
    [Google Scholar]
  69. KumarS. SrivastavaD.P. Indian J. Pharm. Sci.201072445846410.4103/0250‑474X.7391721218056
    [Google Scholar]
  70. MohammadiB. KhorramiB.R. GhorbaniM. DusekM. Tetrahedron201773527291729410.1016/j.tet.2017.11.022
    [Google Scholar]
  71. LalB. TittalR.K. MathpatiR.S. VikasG. NehraN. LalK. J. Mol. Struct.2023129413645510.1016/j.molstruc.2023.136455
    [Google Scholar]
  72. KhaletskiiA.M. MoldaverB.L. Russ. Chem. Rev.1963321053555010.1070/RC1963v032n10ABEH001362
    [Google Scholar]
  73. FrederikC. GeorgeB.H. ManfredB. Chem. Abstr.199311838935b
    [Google Scholar]
  74. BaccoliniG. GianelliM. Tetrahedron199551349487949210.1016/0040‑4020(95)00550‑R
    [Google Scholar]
  75. HouilleO. FretzH. HilpertK. RiedererM. GillerT. ValdenaireO. CA Patent, 2,529,4362005
    [Google Scholar]
  76. IslamA.M. el-BayoukiK.A. MoharramH.H. Pharmazie19843963823836483944
    [Google Scholar]
  77. ParasharB. JainA. BharadwajS. SharmaV.K. Med. Chem. Res.20122181692169910.1007/s00044‑011‑9687‑0
    [Google Scholar]
  78. ZhangX.Y. GuY.F. ChenT. YangD.X. WangX.X. JiangB.L. ShaoK-P. ZhaoW. WangC. WangJ-W. ZhangQ-R. LiuH-M. MedChemComm20156101781178610.1039/C5MD00240K
    [Google Scholar]
  79. YangY. SeverinA. ChopraR. KrishnamurthyG. SinghG. HuW. KeeneyD. SvensonK. PetersenP.J. LabthavikulP. ShlaesD.M. RasmussenB.A. FailliA.A. ShumskyJ.S. KuttererK.M.K. GilbertA. MansourT.S. Antimicrob. Agents Chemother.200650255656410.1128/AAC.50.2.556‑564.200616436710
    [Google Scholar]
  80. KuttererK.M.K. DavisJ.M. SinghG. YangY. HuW. SeverinA. RasmussenB.A. KrishnamurthyG. FailliA. KatzA.H. Bioorg. Med. Chem. Lett.200515102527253110.1016/j.bmcl.2005.03.05815863310
    [Google Scholar]
  81. El-EmaryT.I. J. Chin. Chem. Soc.200653239140110.1002/jccs.200600050
    [Google Scholar]
  82. Le BourdonnecB. CauvinC. MeulonE. YousS. GoossensJ.F. DurantF. HoussinR. HénichartJ.P. J. Med. Chem.200245214794479810.1021/jm010457z12361407
    [Google Scholar]
  83. StevenE. HelmutW. DiehlD.R. Patent US 4,853,3661990
    [Google Scholar]
  84. FarghalyA.M. IbrahimC. El-KhawassE.M. FahmyS.M. BistawroosA.E. Alexandria. J. Pharm. Sci.198932170173
    [Google Scholar]
  85. KasperM.F. SchneiderC.H. J. Immunol. Methods1987101223524310.1016/0022‑1759(87)90155‑43611798
    [Google Scholar]
  86. RahmanM.T. NishinoH. Org. Lett.20035162887289010.1021/ol034939b12889900
    [Google Scholar]
  87. RahmanM.T. NishinoH. QianC.Y. Tetrahedron Lett.200344285225522810.1016/S0040‑4039(03)01274‑7
    [Google Scholar]
  88. ZhaoX.Y. MetzW.A. SieberF. JandaK.D. Tetrahedron Lett.199839468433843610.1016/S0040‑4039(98)01921‑2
    [Google Scholar]
  89. VennerstromJ.L. HolmesT.J. J. Med. Chem.1987303563567
    [Google Scholar]
  90. AhmedA.E. DoniaS.G. Pol. J. Chem.1988624-6465471
    [Google Scholar]
  91. PadmajaA. ReddyG.S. Venkata Nagendra MohanA. PadmavathiV. Chem. Pharm. Bull.200856564765310.1248/cpb.56.64718451551
    [Google Scholar]
  92. AhasanN.B. IslamM.R. Bangladesh J. Pharmacol.200822818710.3329/bjp.v2i2.575
    [Google Scholar]
  93. SalemM.A.I. MadkourH.M.F. Al-NuaimiI.S. Al-QaradawiS.Y. J. Serb. Chem. Soc.199358289100
    [Google Scholar]
  94. YakutovichV.G. MoldaverB.L. KitaevY.P. TitovaZ.S. Bull. Acad. Sci. USSR, Div. Chem. Sci.196817483884310.1007/BF00905765
    [Google Scholar]
  95. SharmaI. SaxenaA. OjhaC.K. PardasaniP. PardasaniR.T. MukherjeeT. J. Chem. Sci.2002114652353110.1007/BF02708846
    [Google Scholar]
  96. HamedA.A. SayedG.H. El-MobayedM. GanoubN.A. Egypt. J. Chem.1985284303309
    [Google Scholar]
  97. MoldaverB.L. AronzonM.E. AdaninV.M. ZyakunA.M. Khim. Geterotsikl. Soedin.19862222226
    [Google Scholar]
  98. MiroslavI. JiriG. JiriM. Patent CS 229,7931988
    [Google Scholar]
  99. WermuthU.S. Patent, 39962311976
    [Google Scholar]
  100. HughesM.F. MasonR.P. ElingT.E. Mol. Pharmacol.19883421861932842654
    [Google Scholar]
  101. TiwariA. SinghA. East J. Sci. Res.201317792693510.5829/idosi.mejsr.2013.17.07.12236
    [Google Scholar]
  102. BrañaM.F. CastellanoJ.M. RedondoM.C. EspluguesJ. J. Heterocycl. Chem.198724374174310.1002/jhet.5570240339
    [Google Scholar]
  103. ChauhanS.M.S. SrinivasK.A. MohapatraP.P. Indian J. Chem.199938B72472510.1248/cpb.51.134514600390
    [Google Scholar]
  104. DeshmukhM.B. JagtapS.S. DeshmukhS.A. J. Indian Chem. Soc.2006831055105710.1002/chin.200732133
    [Google Scholar]
  105. WhitehouseM.W. KippenI. KlinenbergJ.R. Biochem. Pharmacol.197120123309332010.1016/0006‑2952(71)90435‑75132879
    [Google Scholar]
  106. ScheiblichS. Chem. Abstr.199512281389w
    [Google Scholar]
  107. NewtonT.W. Patent EP 6167721994
    [Google Scholar]
  108. NewtonT.W. Patent WO 94 22,8531995
    [Google Scholar]
  109. HosokawaT. DattaS. ShethA.R. GrantD.J.W. CrystEngComm200464424324910.1039/b405547k
    [Google Scholar]
  110. KolbV.M. CollotonP.A. RobinsonP.D. LutfiH.G. MeyersC.Y. Acta Crystallogr. C19965271781178410.1107/S0108270196004416
    [Google Scholar]
  111. GillisB.T. IzydoreR.A. J. Org. Chem.196934103181318710.1021/jo01262a080
    [Google Scholar]
  112. PerelJ.M. SnellM.M. ChenW. DaytonP.G. Biochem. Pharmacol.19641391305131710.1016/0006‑2952(64)90231‑X14221728
    [Google Scholar]
  113. PadmavathiV. BalaiaA. Ramana ReddyT.V. Bhaskar ReddyD. Electron Impact Studies of Spiro 1,4-Dihydro Pyridine-Pyrimidinetrione/Thioxopyrimidinedione/Pyrazolidinedione/Isoxazolidinedione.ISMAS-SJS2003935937
    [Google Scholar]
  114. ChhakraS. MalhotraG.S. SinghS. ChauhanS.S. Rasayan J. Chem.20201331959196310.31788/RJC.2020.1335863
    [Google Scholar]
  115. KhumarA.B.S. KumarK.N. RajaC. EzhilarasiM.R. Rasayan J. Chem.20201321199121410.31788/RJC.2020.1325495
    [Google Scholar]
/content/journals/loc/10.2174/0115701786351677250217075130
Loading
/content/journals/loc/10.2174/0115701786351677250217075130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test