Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Brivaracetam is a relatively new racetam drug for the treatment of epilepsy, synthesis of which with proper stereocontrol remains challenging. Herein we describe a solvent-free lactamization method for the development of two efficient synthetic routes to brivaracetam. The key method is a one-step condensation of amines with chiral α-carboxyethyl-β-propyl butyrolactone under neat conditions that proceed through tandem decarboxylation and lactamization. The lactam obtained using benzylamine was converted to ()-3-propyl pyrrolidinone, a key intermediate to brivaracetam. Whereas, the lactam obtained from the condensation of ()-2-amino butanol was further transformed into brivaracetam.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786350134241220173948
2025-01-07
2025-09-08
Loading full text...

Full text loading...

References

  1. StafstromC.E. CarmantL. Cold Spring Harb. Perspect. Med.201556a02242610.1101/cshperspect.a022426 26033084
    [Google Scholar]
  2. BeghiE. GiussaniG. NicholsE. Abd-AllahF. AbdelaJ. AbdelalimA. AbrahaH.N. AdibM.G. AgrawalS. AlahdabF. AwasthiA. AyeleY. BarbozaM.A. BelachewA.B. BiadgoB. BijaniA. BitewH. CarvalhoF. ChaiahY. DaryaniA. DoH.P. DubeyM. EndriesA.Y.Y. EskandariehS. FaroA. FarzadfarF. FereshtehnejadS-M. FernandesE. FijabiD.O. FilipI. FischerF. GebreA.K. TsadikA.G. GebremichaelT.G. GezaeK.E. Ghasemi-KasmanM. WeldegwergsK.G. DegefaM.G. GnedovskayaE.V. HagosT.B. Haj-MirzaianA. Haj-MirzaianA. HassenH.Y. HayS.I. JakovljevicM. KasaeianA. KassaT.D. KhaderY.S. KhalilI. KhanE.A. KhubchandaniJ. KisaA. KrohnK.J. KulkarniC. NirayoY.L. MackayM.T. MajdanM. MajeedA. ManhertzT. MehndirattaM.M. MekonenT. MelesH.G. MengistuG. MohammedS. NaghaviM. MokdadA.H. MustafaG. IrvaniS.S.N. NguyenL.H. NixonM.R. OgboF.A. OlagunjuA.T. OlagunjuT.O. OwolabiM.O. PhillipsM.R. Pinilla-MonsalveG.D. QorbaniM. RadfarA. RafayA. Rahimi-MovagharV. ReinigN. SachdevP.S. SafariH. SafariS. SafiriS. SahraianM.A. SamyA.M. SarviS. SawhneyM. ShaikhM.A. SharifM. SinghG. SmithM. SzoekeC.E.I. Tabarés-SeisdedosR. TemsahM-H. TemsahO. Tortajada-GirbésM. TranB.X. TsegayA.A.T. UllahI. VenketasubramanianN. WestermanR. WinklerA.S. YimerE.M. YonemotoN. FeiginV.L. VosT. MurrayC.J.L. Lancet Neurol.201918435737510.1016/S1474‑4422(18)30454‑X 30773428
    [Google Scholar]
  3. (a WangS.J. ZhaoM.Y. ZhaoP.C. ZhangW. RaoG.W. Curr. Med. Chem.202431441045210.2174/0929867330666230117160632 36650655
    [Google Scholar]
  4. (b MarkhamA. Drugs201676451752210.1007/s40265‑016‑0555‑6 26899665
    [Google Scholar]
  5. (a TamatamR. ShinD. Pharmaceuticals (Basel)202316333910.3390/ph16030339
    [Google Scholar]
  6. (b AbramM. JakubiecM. KamińskiK. ChemMedChem201914201744176110.1002/cmdc.201900367 31476107
    [Google Scholar]
  7. (c SchüléA. MerschaertA. SzczepaniakC. MaréchalC. CarlyN. O’RourkeJ. AtesC. Org. Process Res. Dev.20162091566157510.1021/acs.oprd.6b00094
    [Google Scholar]
  8. (d MittapalliG.K. RobertsE. Curr. Med. Chem.201421672275410.2174/0929867320666131119153215 24251563
    [Google Scholar]
  9. GaykeM. NarodeH. EppaG. BhosaleR.S. YadavJ.S. ACS Omega2022732486250310.1021/acsomega.1c05378 35097251
    [Google Scholar]
  10. (a ChavanS.P. KawaleS.A. ChavanP.N. Tetrahedron Lett.2019604615124910.1016/j.tetlet.2019.151249
    [Google Scholar]
  11. (b ReznikovA.N. KapranovL.E. IvankinaV.V. SibiryakovaA.E. RybakovV.B. KlimochkinY.N. Helvetica201810112e180017010.1002/hlca.201800170
    [Google Scholar]
  12. (c KumarS. AnkitJ. BhaskarB. KumarA. IN Patent 2017110384202017
  13. (d ShaozhiH. LeiS. YiwenC. YawenX. CN Patent 105646319B2018
  14. (e WangP. LiP. WeiQ. LiuY. WO Patent 2016191435A12016
  15. (f ChengxianL. TaT. YangyangT. ShangzeC. CN Patent 107513032A2017
  16. (g PengG. FengweiL. JianxiaoR. WenfengZ. WO Patent 2020051796A12020
  17. (h DifaL. TingO. ZhibinH. XunfaG. ZhengmaoL. PanxingY. MinF. CN Patent 109574778A2019
  18. (i LiangM. WO Patent 2018152950A12018
  19. (j ChunyanW. ZhiyongC. CongW. CN Patent 106748950A2017
  20. (k SarabinduR.A. RameshD.K. MutyalaV.P. GopalP. AbhishekG. SouravC. AnimeshH. AjayK.Y. SubhoR. WO Patent 2020148787A12020
  21. StephenL.J. BrodieM.J. Ther. Adv. Neurol. Disord.2018111756285617742081
    [Google Scholar]
  22. (a FrancoM.S. SilvaR.C. RosaG.H.S. FloresL.M. de OliveiraK.T. de AssisF.F. ACS Omega20238230082301610.1021/acsomega.3c02134 37396260
    [Google Scholar]
  23. (b GuoS. MaB. ChenG.Q. ZhangX. Org. Lett.202325142426243110.1021/acs.orglett.3c00532 36999750
    [Google Scholar]
  24. (c FengJ. XueY. WangJ. XieX. LuC. ChenH. LuY. ZhuL. ChuD. ChenX. Process Biochem.202312610811610.1016/j.procbio.2022.12.036
    [Google Scholar]
  25. (d HartleyW.C. SchielF. ErminiE. MelchiorreP. Angew. Chem. Int. Ed.20226126e20220473510.1002/anie.202204735
    [Google Scholar]
  26. (a PriyadarshanA. TripathiG. SinghA.K. RajkhowaS. KumarA. TiwariV.K. Curr. Green Chem.202310127147
    [Google Scholar]
  27. (b ZangadeS. PatilP. Curr. Org. Chem.202023212295231810.2174/1385272823666191016165532
    [Google Scholar]
  28. (c SlausonS.R. PembertonR. GhoshP. TantilloD.J. AubéJ. J. Org. Chem.201580105260527110.1021/acs.joc.5b00804 25901898
    [Google Scholar]
  29. (d GhoshP. ChakrabortyR.R. Lett. Org. Chem.201714856657010.2174/1570178614666170609072519
    [Google Scholar]
  30. SeitzM. ReiserO. Curr. Opin. Chem. Biol.20059328529210.1016/j.cbpa.2005.03.005 15939330
    [Google Scholar]
  31. (a ZhouY. GuoS. HuangQ. LangQ. ChenG-Q. zhangX. Chem. Sci. (Camb.)2023144888489210.1039/D3SC00491K
    [Google Scholar]
  32. (b ChengX. LiT. GutmanK. ZhangL. J. Am. Chem. Soc.202114329108761088110.1021/jacs.1c05781 34264076
    [Google Scholar]
  33. (c BandyopadhyayM. NayakA. BeraM.K. Synlett2020311474147810.1055/s‑0040‑1707820
    [Google Scholar]
  34. SinghS.K. SureshM. SinghR.B. BandichhorR. GhoshP. Tetrahedron Lett.202210115390315390710.1016/j.tetlet.2022.153903
    [Google Scholar]
  35. (a JaiswalA. SharmaA.K. SinghK.N. Org. Biomol. Chem.20201881623162810.1039/C9OB02550B 32037416
    [Google Scholar]
  36. (b BuchspiesJ. RahmanM.M. SzostakM. Molecules202126118810.3390/molecules26010188 33401664
    [Google Scholar]
  37. LvY. TangC. LiaoJ. WuS. YaoL. RuanH. SottoA. ShenJ. ACS Sustain. Chem. Eng.2021993542355110.1021/acssuschemeng.0c08540
    [Google Scholar]
  38. OkT. JeonA. LeeJ. LimJ.H. HongC.S. LeeH.S. J. Org. Chem.200772197390739310.1021/jo0709605 17715971
    [Google Scholar]
  39. RomboutsF. FrankenD. MartínezLamencaC. BraekenM. ZavattaroC. ChenJ. TrabancoA.A. Tetrahedron Lett.2010514815481810.1016/j.tetlet.2010.07.022
    [Google Scholar]
  40. EppJ.B. WidlanskiT.S. J. Org. Chem.199964129329510.1021/jo981316g 11674117
    [Google Scholar]
  41. NoguchiT. SekineM. YokooY. JungS. ImaiN. Chem. Lett.201342658058210.1246/cl.130096
    [Google Scholar]
  42. AtesC. LurquinF. QuesnelY. SchuleA. WO Patent 2007031263A12007
/content/journals/loc/10.2174/0115701786350134241220173948
Loading
/content/journals/loc/10.2174/0115701786350134241220173948
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): Brivaracetam; debenzylation; PIDA-TEMPO oxidation; solvent-free; tandem reaction; γ-lactam
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test