Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The allylation reaction of Morita-Baylis-Hillman carbonates is an effective method for constructing C-C bonds. Yang's group has utilized azomethine ylides, which are generated from 2-aminomalonate and -amino benzaldehydes, to engage in allylation reactions with MBH carbonates. Despite the initial substrate specificity that confined the reaction to -amino benzaldehydes, rendering benzaldehyde and salicylaldehyde ineffective for producing the desired adducts, our group has made a significant advancement. By employing diethyl amino malonate hydrochloride as the substrate, we have successfully integrated benzaldehyde and salicylaldehyde into this reaction framework, thereby broadening the versatility of the process. This strategy demonstrates excellent substrate tolerance and provides the corresponding adducts with yields up to 99%. The gram-scale synthesis and subsequent product derivatization highlight the significant applicability of this method.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786348975241124171756
2025-01-07
2025-10-27
Loading full text...

Full text loading...

References

  1. SongF. WangB. ShiZ.J. Acc. Chem. Res.202356212867288610.1021/acs.accounts.3c00230 37882453
    [Google Scholar]
  2. GongY. HuJ. QiuC. GongH. Acc. Chem. Res.20245781149116210.1021/acs.accounts.3c00810 38547518
    [Google Scholar]
  3. BeraS.K. BhanjaR. MalP. SahuC.C. Synthesis202456458559610.1055/a‑2063‑0221
    [Google Scholar]
  4. SinghalR. ChoudharyS.P. MalikB. PilaniaM. RSC Advances20241495817584510.1039/D3RA08685B 38362068
    [Google Scholar]
  5. StivalaC.E. ZbiegJ.R. LiuP. KrischeM.J. Acc. Chem. Res.202255152138214710.1021/acs.accounts.2c00302 35830564
    [Google Scholar]
  6. RichardF. ClarkP. HannamA. KeenanT. JeanA. ArseniyadisS. Chem. Soc. Rev.20245341936198310.1039/D3CS00856H 38206332
    [Google Scholar]
  7. GriffithsC.M. FranckevičiusV. Chemistry20243020e20230428910.1002/chem.202304289 38284328
    [Google Scholar]
  8. WeiY. ShiM. Chem. Rev.201311386659669010.1021/cr300192h 23679920
    [Google Scholar]
  9. GuoH. FanY.C. SunZ. WuY. KwonO. Chem. Rev.201811820100491029310.1021/acs.chemrev.8b00081 30260217
    [Google Scholar]
  10. NiH. ChanW.L. LuY. Chem. Rev.2018118189344941110.1021/acs.chemrev.8b00261 30204423
    [Google Scholar]
  11. HuangY. LiaoJ. WangW. LiuH. GuoH. Chem. Commun.20205697152351528110.1039/D0CC05699E 33320123
    [Google Scholar]
  12. WangQ.L. PengL. WangF.Y. ZhangM.L. JiaL.N. TianF. XuX.Y. WangL.X. Chem. Commun.201349829422942410.1039/c3cc45139a 24005475
    [Google Scholar]
  13. ZhongN.J. WeiF. XuanQ.Q. LiuL. WangD. ChenY. J. Chem. Commun.20134994110711107310.1039/c3cc46490c 24141558
    [Google Scholar]
  14. XieP. HuangY. Org. Biomol. Chem.201513328578859510.1039/C5OB00865D 26133693
    [Google Scholar]
  15. WeiF. HuangH.Y. ZhongN.J. GuC.L. WangD. LiuL. Org. Lett.20151771688169110.1021/acs.orglett.5b00456 25781216
    [Google Scholar]
  16. WangK.K. WangP. OuyangQ. DuW. ChenY.C. Chem. Commun.20165274111041110710.1039/C6CC06148F 27546091
    [Google Scholar]
  17. WangK.K. JinT. HuangX. OuyangQ. DuW. ChenY.C. Org. Lett.201618487287510.1021/acs.orglett.6b00189 26852932
    [Google Scholar]
  18. SunW. HongL. LiuC. WangR. Org. Lett.201012173914391710.1021/ol101601d 20681620
    [Google Scholar]
  19. HongL. SunW. LiuC. ZhaoD. WangR. Chem. Commun.201046162856285810.1039/b926037d 20369206
    [Google Scholar]
  20. TekkamS. AlamM.A. JonnalagaddaS.C. MereddyV.R. Chem. Commun.201147113219322110.1039/c0cc05609j 21318205
    [Google Scholar]
  21. WangX. MengF. WangY. HanZ. ChenY.J. LiuL. WangZ. DingK. Angew. Chem. Int. Ed.201251379276928210.1002/anie.201204925
    [Google Scholar]
  22. WangX. GuoP. HanZ. WangX. WangZ. DingK. J. Am. Chem. Soc.2014136140541110.1021/ja410707q 24328176
    [Google Scholar]
  23. LiuJ. HanZ. WangX. WangZ. DingK. J. Am. Chem. Soc.201513749153461534910.1021/jacs.5b07764 26376845
    [Google Scholar]
  24. WangX. WangX. HanZ. WangZ. DingK. Angew. Chem. Int. Ed.20175641116111910.1002/anie.201609332
    [Google Scholar]
  25. LiuJ. HanZ. WangX. MengF. WangZ. DingK. Angew. Chem. Int. Ed.201756185050505410.1002/anie.201701455
    [Google Scholar]
  26. HuY. ShiW. ZhengB. LiaoJ. WangW. WuY. GuoH. Angew. Chem. Int. Ed.20205945198201982410.1002/anie.202009460
    [Google Scholar]
  27. ShirakawaS. YamamotoK. MaruokaK. Angew. Chem. Int. Ed.201554383884010.1002/anie.201409065
    [Google Scholar]
  28. KazmaierU. Org. Chem. Front.20163111541156010.1039/C6QO00192K
    [Google Scholar]
  29. HeldF.E. TsogoevaS.B. Catal. Sci. Technol.20166364566710.1039/C5CY01894C
    [Google Scholar]
  30. VicarioJ. Synlett20162771006102110.1055/s‑0035‑1561322
    [Google Scholar]
  31. WeiL. XuS.M. ZhuQ. CheC. WangC.J. Angew. Chem. Int. Ed.20175640123121231610.1002/anie.201707019
    [Google Scholar]
  32. HuoX. ZhangJ. FuJ. HeR. ZhangW. J. Am. Chem. Soc.201814062080208410.1021/jacs.8b00187 29381351
    [Google Scholar]
  33. WeiL. ZhuQ. XuS.M. ChangX. WangC.J. J. Am. Chem. Soc.201814041508151310.1021/jacs.7b12174 29303578
    [Google Scholar]
  34. TengH.L. LuoF.L. TaoH.Y. WangC.J. Org. Lett.201113205600560310.1021/ol202326j 21939199
    [Google Scholar]
  35. HuY. YanZ. ShiW. LiaoJ. LiuM. PanT. WangW. WuY. HaoX. GuoH. Chem. Commun.202157658059806210.1039/D1CC02861H 34296236
    [Google Scholar]
  36. ZhengY. WangJ. XiaP-J. ZhaoQ-L. XiaoJ-A. XiangH-Y. J. Org. Chem.2017821220210.1021/acs.joc.7b02064 29090919
    [Google Scholar]
/content/journals/loc/10.2174/0115701786348975241124171756
Loading
/content/journals/loc/10.2174/0115701786348975241124171756
Loading

Data & Media loading...

Supplements

X-ray crystal data for compound and the copies of 1H NMR and 13C NMR for compounds .

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test