Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The Mannich reaction, named after Carl Mannich, is a flexible technique for generating β-amino carbonyl compounds and is a cornerstone of organic synthesis. It produces carbon-carbon and carbon-nitrogen bonds in one step and is crucial for synthetic chemistry due to its substrate versatility. Currently, efforts are focused on green chemical modifications for sustainability. Drug design and development use this Mannich process to synthesize physiologically active chemicals, identify medications, and derivatize natural products. The Mannich reaction's role in current synthetic methodologies and its compliance with sustainable chemical practices will be highlighted in this study. The review article attempted to discuss the mechanism of the Mannich reaction, significant pharmaceutical applications and analysis in the light of the green chemistry principle. This encompasses a comprehensive review of the step-by-step process for the course of the reaction and leading pharmaceutical synthesis, together with practices that make the reaction more sustainable, underlying its overall versatility and importance in modern-day organic synthesis.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786348628250108042404
2025-01-24
2025-12-10
Loading full text...

Full text loading...

References

  1. FrelekJ. PakulskiZ. ZamojskiA. J. Carbohy. Chem.1993124-562563910.1080/07328309308019412
    [Google Scholar]
  2. LewisD. ZhangY. PrisinzanoT. DerschC.M. RothmanR.B. JacobsonA.E. RiceK.C. Bioorg. Med. Chem. Lett.20031371385138910.1016/S0960‑894X(03)00108‑2 12657288
    [Google Scholar]
  3. MannichC. KröscheW. Arch. Pharm.1912250164766710.1002/ardp.19122500151
    [Google Scholar]
  4. RuizM. CarrilloL. Orga. Chem.: Cur. Res.201042124131
    [Google Scholar]
  5. LuzzioF.A. Tetrahedron200157491594510.1016/S0040‑4020(00)00965‑0
    [Google Scholar]
  6. NogradyT. WeaverD.F. Medicinal Chemistry: A Molecular and Biochemical Approach.1st Ed.New York, NYOxford University Press200555410.1093/oso/9780195104554.001.0001
    [Google Scholar]
  7. FarjA.S. AL-AzawiK.F. Biochem. Cell. Arch.202222132793283
    [Google Scholar]
  8. BagheriI. MohammadiL. ZadsirjanV. HeraviM.M. Chem. Select2021651008106610.1002/slct.202003034
    [Google Scholar]
  9. GeethapriyaC. ElumalaiimK. Organics20214450352310.3390/org4040035
    [Google Scholar]
  10. ReddyK.C. ShindeP. Curr. Pharm. Des.202126886790410.2174/1381612826666200206093815 32026773
    [Google Scholar]
  11. CamposK.R. ColemanP.J. AlvarezJ.C. DreherS.D. GarbaccioR.M. TerrettN.K. TillyerR.D. TruppoM.D. ParmeeE.R. Science20193636424eaat080510.1126/science.aat0805 30655413
    [Google Scholar]
  12. FialkowskiM. BishopK.J. ChubukovV.A. CampbellC.J. GrzybowskiB.A. Angew. Chem. Int.20054444714510.1002/anie.200590146
    [Google Scholar]
  13. BanerjeeB. Curr. Org. Chem.20212512310.2174/138527282501210101161748
    [Google Scholar]
  14. SheldonR.A. BradyD. ChemSusChem201912132859288110.1002/cssc.201900351 30938093
    [Google Scholar]
  15. ChengD.J. ShaoY.D. ChemCatChem201911112575258910.1002/cctc.201900379
    [Google Scholar]
  16. ThompsonB.B. J. Pharm. Sci.196857571573310.1002/jps.2600570501 4873686
    [Google Scholar]
  17. PhillipsA.M.F. da SilvaM.F.C.G. PombeiroA.J.L. Front Chem.20208303010.3389/fchem.2020.00030 32047742
    [Google Scholar]
  18. BiersackB. AhmedK. PadhyeS. SchobertR. Expert Opin. Drug Discov.2018131394910.1080/17460441.2018.1403420 29137490
    [Google Scholar]
  19. MajhiS. DasD. Tetrahedron20217813180110.1016/j.tet.2020.131801
    [Google Scholar]
  20. BracherF. TremmelT. Arch. Pharm.20173507e160023610.1002/ardp.201600236 27805723
    [Google Scholar]
  21. ZhaoG. JiangT. GaoH. HanB. HuangJ. SunD. Green Chem.200462757710.1039/b309700p
    [Google Scholar]
  22. Zhang, W.; Cue, B.W., Eds.; Green techniques for organic synthesis and medicinal chemistry.2nd Ed.Hoboken, New JerseyJohn Wiley & Sons201872810.1002/9781119288152
    [Google Scholar]
  23. AndraosJ. MatlackA.S. Introduction to green chemistry.3rd Ed.Boca Raton, UKCRC press202264810.1201/9781003033615
    [Google Scholar]
  24. CoppolaG.A. PillitteriS. Van der EyckenE.V. YouS.L. SharmaU.K. Chem. Soc. Rev.20225162313238210.1039/D1CS00510C 35244107
    [Google Scholar]
  25. Ameta, S.C.; Ameta, R., Eds.; Green Chemistry: Fundamentals and Applications2nd ed.CRC pressBoca Raton, UK2023103396
    [Google Scholar]
  26. DobleM. RollinsK. KumarA. Green chemistry and engineeringAcademic PressElsevier B.V.201032610.1016/B978‑0‑12‑372532‑5.X5000‑7
    [Google Scholar]
  27. Gómez-LópezP. Puente-SantiagoA. Castro-BeltránA. Santos do NascimentoL.A. BaluA.M. LuqueR. Alvarado-BeltránC.G. Curr. Opin. Green Sustain. Chem.202024485510.1016/j.cogsc.2020.03.001
    [Google Scholar]
  28. AndraosJ. Org. Process Res. Dev.20059440443110.1021/op050014v
    [Google Scholar]
  29. SheldonR.A. Chem. Soc. Rev.20124141437145110.1039/C1CS15219J 22033698
    [Google Scholar]
  30. TrostB.M. CrawleyM.L. Chem. Rev.200310382921294410.1021/cr020027w 12914486
    [Google Scholar]
  31. KarimiB. EndersD. JafariE. Synthesis201345202769281210.1055/s‑0033‑1339479
    [Google Scholar]
  32. IshiharaK. KubotaM. KuriharaH. YamamotoH. J. Org. Chem.199661144560456710.1021/jo952237x 11667380
    [Google Scholar]
  33. JoshiN.S. WhitakerL.R. FrancisM.B. J. Am. Chem. Soc.200412649159421594310.1021/ja0439017 15584710
    [Google Scholar]
  34. MurrayB.A. J. Org. Chem.20147682672267910.1002/9781118560273.ch1
    [Google Scholar]
  35. DaiJ. XiongD. YuanT. LiuJ. ChenT. ShaoZ. Angew. Chem. Int. Ed.20175641126971270110.1002/anie.201706304 28786162
    [Google Scholar]
  36. ShiS. QiuW. MiaoP. LiR. LinX. SunZ. Nat. Commun.2021121100610.1038/s41467‑021‑21303‑3 33579948
    [Google Scholar]
  37. Xiao-HuaC. HuiG. BingX. Eur. J. Chem.20123225826610.5155/eurjchem.3.2.258‑266.536
    [Google Scholar]
  38. SubramaniapillaiS.G. J. Chem. Sci.2013125346748210.1007/s12039‑013‑0405‑y
    [Google Scholar]
  39. VerkadeJ.M.M. HemertL.J.C. QuaedfliegP.J.L.M. RutjesF.P.J.T. Chem. Soc. Rev.2008371294110.1039/B713885G 18197331
    [Google Scholar]
  40. DondoniA. MassiA. SabbatiniS. Chemistry200511237110712510.1002/chem.200500823 16224807
    [Google Scholar]
  41. EissenM. MetzgerJ.O. Chemistry20028163580358510.1002/1521‑3765(20020816)8:16<3580::AID‑CHEM3580>3.0.CO;2‑J 12203284
    [Google Scholar]
  42. CentiG. PerathonerS. Catal. Today200377428729710.1016/S0920‑5861(02)00374‑7
    [Google Scholar]
  43. AnastasP.T. WilliamsonT.C. ACS Symposium SeriesAmerican Chemical SocietyWashington, DC199662644110.1021/bk‑1996‑0626
    [Google Scholar]
  44. AnastasP.T. WilliamsonT.C. HjeresenD. BreenJ.J. Environ. Sci. Technol.1999335116A119A10.1021/es992685c 21657757
    [Google Scholar]
  45. LeitnerW. Science199928454211780178110.1126/science.284.5421.1780b
    [Google Scholar]
  46. TundoP. 1st meeting of the working party on green and sustainable chemistry,2008Available from: http://www.euchems.org/binaries/1stWPGreenandSus28Feb08_tcm23-127739.pdf
  47. WintertonN. Clean Prod. Process.200132626510.1007/s100980100115
    [Google Scholar]
  48. ZhaoG. JiangT. GaoH. HanB. HuangJ. SunD. Green Chem.200462757710.1039/b309700p
    [Google Scholar]
  49. SharghiH. KhoshnoodA. DoroodmandM.M. KhalifehR. J. Heterocycl. Chem.201653116417410.1002/jhet.1811
    [Google Scholar]
  50. PalaniappanS. JohnA. AmarnathC.A. RaoV.J. J. Mol. Catal. Chem.20042181475310.1016/j.molcata.2004.04.010
    [Google Scholar]
  51. YangY. ZhangY. YangJ. XueY. ChemistrySelect20205216504651310.1002/slct.202001606
    [Google Scholar]
  52. AziziN. EbrahimiF. Org. Lett.20068102079208210.1021/ol060498v 16671786
    [Google Scholar]
  53. RosholmT. GoisP.M.P. FranzenR. CandeiasN.R. ChemistryOpen201541394610.1002/open.201402066 25861569
    [Google Scholar]
  54. ChandlerC. GalzeranoP. MichrowskaA. ListB. Angew. Chem. Int. Ed.200948111978198010.1002/anie.200806049 19199308
    [Google Scholar]
  55. ChakrabortiA.K. SinghB. ChankeshwaraS.V. PatelA.R. J. Org. Chem.200974165967597410.1021/jo900614s 19618958
    [Google Scholar]
  56. TingA. GossJ.M. McDougalN.T. SchausS.E. Brønsted base catalysts.20092312810.1007/128_2008_23
    [Google Scholar]
  57. SinghalS. AgarwalS. SinghM. RanaS. AroraS. SinghalN. J. Mol. Liq.201928529931310.1016/j.molliq.2019.03.145
    [Google Scholar]
  58. TingA. SchausS.E. Eur. J. Org. Chem.20072007355797581510.1002/ejoc.200700409
    [Google Scholar]
  59. WuL.L. XiangY. YangD.C. GuanZ. HeY.H. Catal. Sci. Technol.20166113963397010.1039/C5CY01923K
    [Google Scholar]
  60. XueY. LiL.P. HeY.H. GuanZ. Sci. Rep.20122176110.1038/srep00761 23094136
    [Google Scholar]
  61. PatelH.M. PatelK.D. PatelH.D. Curr. Bioact. Compd.20171314758
    [Google Scholar]
  62. MartinS.F. Acc. Chem. Res.2002351089590410.1021/ar950230w 12379142
    [Google Scholar]
  63. BagheriI. MohammadiL. ZadsirjanV. HeraviM.M. ChemistrySelect2021651008106610.1002/slct.202003034
    [Google Scholar]
  64. NobleA. AndersonJ.C. Chem. Rev.201311352887293910.1021/cr300272t 23461586
    [Google Scholar]
  65. GuoQ.X. LiuH. GuoC. LuoS.W. GuY. GongL.Z. J. Am. Chem. Soc.2007129133790379110.1021/ja068236b 17358062
    [Google Scholar]
  66. MikanC.P. WatsonJ.O. WaltonR. WaddellP.G. KnowlesJ.P. Org. Lett.202426265549555310.1021/acs.orglett.4c01924 38905202
    [Google Scholar]
  67. DuY. XuL.W. ShimizuY. OisakiK. KanaiM. ShibasakiM. J. Am. Chem. Soc.200813048161461614710.1021/ja8069727 18998691
    [Google Scholar]
  68. NeuvonenA.J. FöldesT. MadarászÁ. PápaiI. PihkoP.M. ACS Catal.2017753284329410.1021/acscatal.7b00336
    [Google Scholar]
  69. BordunovA.V. BradshawJ.S. PastushokV.N. IzattR.M. Synlett199619961093394810.1055/s‑1996‑5633
    [Google Scholar]
  70. RomanG. Eur. J. Med. Chem.20158974381610.1016/j.ejmech.2014.10.076 25462280
    [Google Scholar]
  71. JiangX. WangY. ZhangG. FuD. ZhangF. KaiM. WangR. Adv. Synth. Catal.2011353101787179610.1002/adsc.201100288
    [Google Scholar]
  72. WaliN. MianaG. ShahA. Br. J. Pharm. Res.20158111210.9734/BJPR/2015/19068
    [Google Scholar]
  73. FadulH.M. Sud. Med. Lab. J.2016313850
    [Google Scholar]
  74. CoresÁ. CleriguéJ. Orocio-RodríguezE. MenéndezJ.C. Pharmaceuticals2022158100910.3390/ph15081009 36015157
    [Google Scholar]
  75. BurnsS.M. CunninghamC.W. MercerS.L. ACS Chem. Neurosci.20189102428243710.1021/acschemneuro.8b00174 29894151
    [Google Scholar]
  76. WangL. CherianC. Kugel DesmoulinS. Mitchell-RyanS. HouZ. MatherlyL.H. GangjeeA. J. Med. Chem.20125541758177010.1021/jm201688n 22243528
    [Google Scholar]
  77. TramontiniM. AngioliniL. Synthesis1990199010743775
    [Google Scholar]
  78. TrostB.M. CrawleyM.L. Chem. Rev.200310382921294410.1021/cr020027w 12914486
    [Google Scholar]
  79. KobayashiS. MoriY. J. Am. Chem. Soc.19961182467406741
    [Google Scholar]
  80. Alvarez-CorralM. Muñoz-DoradoM. Rodríguez-GarcíaI. Curr. Org. Chem.2008121612141232
    [Google Scholar]
/content/journals/loc/10.2174/0115701786348628250108042404
Loading
/content/journals/loc/10.2174/0115701786348628250108042404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test