Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

-arylamino)acrylates are building blocks of great industrial interest as they allow the obtention of a variety of heterocyclic substances, such as quinoline and pyridone derivatives. Therefore, the development of new methodologies for the synthesis of these substances is still of interest. In this work, fourteen -arylamino)acrylates were synthesized in a multigram scale from the reaction of mono- and di-substituted anilines with diethyl ethoxymethylenemalonate by sonochemistry (US) and the results compared to those obtained by conventional heating. The use of the US brought many benefits to these syntheses, including faster reactions and increased yields. The crystal structure of diethyl 2-(((2-chloro-5-nitrophenyl)amino)methylene)malonate is also reported.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786305078240521085708
2024-05-28
2025-10-02
Loading full text...

Full text loading...

References

  1. Serrano-Aroca, Á.; Deb, S., Eds.; Acrylate Polymers for Advanced Applications.LondonIntechOpen202010.5772/intechopen.77563
    [Google Scholar]
  2. PenzelE. BallardN. AsuaJ.M. Polyacrylates.Hoboken, New JerseyWiley202310.1002/14356007.a21_157
    [Google Scholar]
  3. LochheadR.Y. Cosmetic Nanotechnology.Washington, D.CACS Publications200710.1021/bk‑2007‑0961.ch001
    [Google Scholar]
  4. LakshmideviA. NaiduB Sustainable Chem. Pharm.20222510061010.1016/j.scp.2022.100610
    [Google Scholar]
  5. LiuS. LiJ. LinJ. LiuF. LiuT. HuangC. Org. Biomol. Chem.20201861130113410.1039/C9OB02456E31956881
    [Google Scholar]
  6. GoleaL. ChebakiR. LaabassiM. MossetP. Chem. Data Collect.20234310097710.1016/j.cdc.2022.100977
    [Google Scholar]
  7. ChangC.C. ChangY.C. LuW.Y. LaiY.C. WuK.H. LinY.F. ChenH.Y. Eur. Polym. J.201911539940810.1016/j.eurpolymj.2019.03.055
    [Google Scholar]
  8. WangZ. VinceR. Bioorg. Med. Chem. Lett.20081841293129610.1016/j.bmcl.2008.01.02518226894
    [Google Scholar]
  9. KumarJ. MeenaP. SinghA. JameelE. MaqboolM. MobashirM. ShandilyaA. TiwariM. HodaN. JayaramB. Eur. J. Med. Chem.201611926027710.1016/j.ejmech.2016.04.05327227482
    [Google Scholar]
  10. MaignanJ.R. LichorowicC.L. GiarrussoJ. BlakeL.D. CasandraD. MutkaT.S. LaCrueA.N. BurrowsJ.N. WillisP.A. KyleD.E. ManetschR. J. Med. Chem.201659146943696010.1021/acs.jmedchem.6b0075927291102
    [Google Scholar]
  11. DrayeM. ChatelG. DuwaldR. Pharmaceuticals (Basel)20201322310.3390/ph1302002332024033
    [Google Scholar]
  12. MalvacioI. MarianoA.V.D. MoyanoE. Curr. Microw. Chem.201411525810.2174/2213335601666140402002204
    [Google Scholar]
  13. MajhiS. Ultrason. Sonochem.20217710566510.1016/j.ultsonch.2021.10566534298310
    [Google Scholar]
  14. da SilvaE.T. da Silva AraújoA. MoraesA.M. de SouzaM.V.N. Lett. Org. Chem.202017316516910.2174/1570178616666190123114922
    [Google Scholar]
  15. TrivediH.D. JoshiV.B. PatelB.Y. Synth. Commun.2023531182383410.1080/00397911.2023.2199358
    [Google Scholar]
  16. AppaR.M. LakshmideviJ. Siva PrasadS. MuralidharB. Ramesh NaiduB. NarasimhuluM. VenkateswarluK. Synth. Commun.2019491566410.1080/00397911.2018.1540047
    [Google Scholar]
  17. VenkateswarluK. Environ. Chem. Lett.20211953887395010.1007/s10311‑021‑01253‑4
    [Google Scholar]
  18. Barbosa-LimaG. da Silveira PintoL.S. KaiserC.R. WardellJ.L. De FreitasC.S. VieiraY.R. MarttorelliA. Cerbino NetoJ. BozzaP.T. WardellS.M.S.V. de SouzaM.V.N. SouzaT.M.L. Eur. J. Med. Chem.201712743444110.1016/j.ejmech.2017.01.00728092859
    [Google Scholar]
  19. BerningerM. ErkC. FußA. SkafJ. Al-MomaniE. IsraelI. RaschigM. GüntzelP. SamnickS. HolzgrabeU. Eur. J. Med. Chem.201815237739110.1016/j.ejmech.2018.04.05529742443
    [Google Scholar]
  20. Al-shaarA.H. Available From: https://patentimages.storage. googleapis.com/78/fb/d0/16c523e625b1de/EP0174832A 2.pdf 1984
  21. TizD.B. SkokŽ. DurcikM. TomašičT. MašičL.P. IlašJ. ZegaA. DraskovitsG. RévészT. NyergesÁ. PálC. CruzC.D. TammelaP. ŽigonD. KikeljD. ZidarN. Eur. J. Med. Chem.201916716726929010.1016/j.ejmech.2019.02.00430776691
    [Google Scholar]
  22. AyyangarN.R. LahotiR.J. DanielT. Org. Prep. Proced. Int.198214532733110.1080/00304948209354924
    [Google Scholar]
  23. Al-ShaarA.H. BroughtonB.J. ChambersR.K. GilmourD.W. KelseyD.M. LowdenP. LuntE. LythgoeD.J. McClenaghanI. EP Patent 174832A21986
    [Google Scholar]
  24. HajimahdiZ. ZabihollahiR. AghasadeghiM.R. AshtianiS.H. ZarghiA. Med. Chem. Res.20162591861187610.1007/s00044‑016‑1631‑x
    [Google Scholar]
  25. Rigaku. Available From: https://rigaku.com/products/crystallography/x-ray-diffraction/crysalispro 2019
  26. FarrugiaL.J. J. Appl. Cryst.199730556510.1107/S0021889897003117
    [Google Scholar]
  27. MacraeC.F. SovagoI. CottrellS.J. GalekP.T.A. McCabeP. PidcockE. PlatingsM. ShieldsG.P. StevensJ.S. TowlerM. WoodP.A. J. Appl. Cryst.202053122623510.1107/S160057671901409232047413
    [Google Scholar]
  28. SheldrickG.M. Acta Crystallogr. C Struct. Chem.20157113810.1107/S205322961402421825567568
    [Google Scholar]
  29. SpekA.L. Acta Crystallogr. D Biol. Crystallogr.200965214815510.1107/S090744490804362X19171970
    [Google Scholar]
  30. SheldrickG.M. SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement.GottingenUniversity of Gottingen1997
    [Google Scholar]
/content/journals/loc/10.2174/0115701786305078240521085708
Loading
/content/journals/loc/10.2174/0115701786305078240521085708
Loading

Data & Media loading...

Supplements

Full experimental detail, IR, 1H NMR and 13C NMR spectra, HRMS-TOF, geometric parameters, crystal data, and structure refinement details. This material is provided in the “Supplementary Content” section of this article's webpage.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test