Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

The increase in multi-drug resistant (MDR) pathogens and the decline in the number of new antibiotics in the production pipeline pose a serious threat to our ability to treat infectious diseases. In this new landscape, once treatable diseases are now potentially life-threatening. This impending danger requires that urgent attention should be given to developing alternative strategies for combating MDR bacteria. A novel alternative is the use of predatory bacteria, spp, that naturally prey on Gram-negative bacteria, including MDR Enterobacteriaceae. has been shown to be non-pathogenic in animal models and on human cell lines, supporting its feasibility to be used to treat infections in animals and possibly humans. This document reviews various aspects of biology, including its unique life cycle, “predatory toolbox”, prey range, and recent research advances exploring as an antimicrobial agent, stepping towards its use in human therapy. We also discuss the advantages and limitations of using therapy and the strategies to overcome these limitations.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230912161923
2023-09-19
2025-10-19
Loading full text...

Full text loading...

References

  1. D’CostaV.M. KingC.E. KalanL. MorarM. SungW.W.L. SchwarzC. FroeseD. ZazulaG. CalmelsF. DebruyneR. GoldingG.B. PoinarH.N. WrightG.D. Antibiotic resistance is ancient.Nature2011477736545746110.1038/nature10388 21881561
    [Google Scholar]
  2. WrightG.D. Antibiotic resistance in the environment: A link to the clinic?Curr. Opin. Microbiol.201013558959410.1016/j.mib.2010.08.005 20850375
    [Google Scholar]
  3. ČižmanM. The use and resistance to antibiotics in the community.Int. J. Antimicrob. Agents200321429730710.1016/S0924‑8579(02)00394‑1 12672574
    [Google Scholar]
  4. TeuberM. Veterinary use and antibiotic resistance.Curr. Opin. Microbiol.20014549349910.1016/S1369‑5274(00)00241‑1 11587923
    [Google Scholar]
  5. MazelD. DaviesJ. Antibiotic resistance in microbes.Cell. Mol. Life Sci.1999569-1074275410.1007/s000180050021 11212334
    [Google Scholar]
  6. GiamarellouH. Multidrug-resistant Gram-negative bacteria: How to treat and for how long.Int. J. Antimicrob. Agents201036Suppl. 2S50S5410.1016/j.ijantimicag.2010.11.014 21129924
    [Google Scholar]
  7. Surendran-NairM. LauP. LiuY. VenkitanarayananK. Efficacy of selenium in controlling acinetobacter baumannii associated wound infections.Wound Medicine201926110016510.1016/j.wndm.2019.100165
    [Google Scholar]
  8. ProjanS.J. Why is big pharma getting out of antibacterial drug discovery?Curr. Opin. Microbiol.20036542743010.1016/j.mib.2003.08.003 14572532
    [Google Scholar]
  9. SulakvelidzeA. AlavidzeZ. MorrisJ.G.Jr Bacteriophage therapy.Antimicrob. Agents Chemother.200145364965910.1128/AAC.45.3.649‑659.2001 11181338
    [Google Scholar]
  10. OliveiraH. SillankorvaS. MerabishviliM. KluskensL.D. AzeredoJ. Unexploited opportunities for phage therapy.Front. Pharmacol.20156SEP18010.3389/fphar.2015.00180 26441644
    [Google Scholar]
  11. OyedaraO.O. De Luna-SantillanaE.J. Olguin-RodriguezO. GuoX. Mendoza-VillaM.A. Menchaca-ArredondoJ.L. ElufisanT.O. Garza-HernandezJ.A. Garcia LeonI. Rodriguez-PerezM.A. Isolation of Bdellovibrio sp. from soil samples in Mexico and their potential applications in control of pathogens.MicrobiologyOpen201656992100210.1002/mbo3.382 27297185
    [Google Scholar]
  12. AjaoY.O. Rodríguez-LunaI.C. ElufisanT.O. Sánchez-VarelaA. Cortés-EspinosaD.V. CamilliA. GuoX. Bdellovibrio reynosensis sp. nov., from a Mexico soil sample.Int. J. Syst. Evol. Microbiol.2022721200560810.1099/ijsem.0.005608 36748470
    [Google Scholar]
  13. TaylorV.I. BaumannP. ReicheltJ.L. AllenR.D. Isolation, enumeration, and host range of marine bdellovibrios.Arch. Microbiol.197498110111410.1007/BF00425273 4211210
    [Google Scholar]
  14. KovalS.F. HynesS.H. FlannaganR.S. PasternakZ. DavidovY. JurkevitchE. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus.Int. J. Syst. Evol. Microbiol.201363Pt_114615110.1099/ijs.0.039701‑022368169
    [Google Scholar]
  15. LiH. LiuC. ChenL. ZhangX. CaiJ. Biological characterization of two marine Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their application in the elimination of Vibrio parahaemolyticus in oyster.Int. J. Food Microbiol.20111511364310.1016/j.ijfoodmicro.2011.07.036 21899909
    [Google Scholar]
  16. LambertC. MorehouseK.A. ChangC.Y. SockettR.E. Bdellovibrio: growth and development during the predatory cycle.Curr. Opin. Microbiol.20069663964410.1016/j.mib.2006.10.002 17056298
    [Google Scholar]
  17. BurnhamJ.C. HashimotoT. ContiS.F. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into gram-negative bacterial hosts.J. Bacteriol.19689641366138110.1128/jb.96.4.1366‑1381.1968 4879563
    [Google Scholar]
  18. EvansK.J. LambertC. SockettR.E. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili.J. Bacteriol.2007189134850485910.1128/JB.01942‑06 17416646
    [Google Scholar]
  19. RotemO. PasternakZ. ShimoniE. BelausovE. PoratZ. PietrokovskiS. JurkevitchE. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues.Proc. Natl. Acad. Sci.201511244E6028E603710.1073/pnas.1515749112 26487679
    [Google Scholar]
  20. FentonA.K. KannaM. WoodsR.D. AizawaS.I. SockettR.E. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores.J. Bacteriol.2010192246329633510.1128/JB.00914‑10 20935099
    [Google Scholar]
  21. DashiffA. KadouriD.E. A new method for isolating host-independent variants of Bdellovibrio bacteriovorus using E. coli auxotrophs.Open Microbiol. J.200931879110.2174/1874285800903010087 19590595
    [Google Scholar]
  22. SeidlerR.J. StarrM.P. Isolation and characterization of host-independent Bdellovibrios.J. Bacteriol.1969100276978510.1128/jb.100.2.769‑785.1969 4901359
    [Google Scholar]
  23. LambertC. EvansK.J. TillR. HobleyL. CapenessM. RendulicS. SchusterS.C. AizawaS.I. SockettR.E. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus.Mol. Microbiol.200660227428610.1111/j.1365‑2958.2006.05081.x 16573680
    [Google Scholar]
  24. ShiloM. Morphological and physiological aspects of the interaction of Bdellovibrio with host bacteria.Curr. Top. Microbiol. Immunol.19695017420410.1007/978‑3‑642‑46169‑9_6 4907693
    [Google Scholar]
  25. TangY. HuangQ.X. ZhengD.W. ChenY. MaL. HuangC. ZhangX.Z. Engineered Bdellovibrio bacteriovorus: A countermeasure for biofilm-induced periodontitis.Mater. Today202253718310.1016/j.mattod.2022.01.013
    [Google Scholar]
  26. HespellR.B. ThomashowM.F. RittenbergS.C. Changes in cell composition and viability of Bdellovibrio bacteriovorus during starvation.Arch. Microbiol.197497131332710.1007/BF00403070 4599992
    [Google Scholar]
  27. RendulicS. JagtapP. RosinusA. EppingerM. BaarC. LanzC. KellerH. LambertC. EvansK.J. GoesmannA. MeyerF. SockettR.E. SchusterS.C. Predator Unmasked: Life cycle of bdellovibrio bacteriovorus from a genomic perspective.Science2004303565868969210.1126/science.1093027
    [Google Scholar]
  28. ThomashowM.F. RittenbergS.C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: Solubilization of Escherichia coli peptidoglycan.J. Bacteriol.19781353998100710.1128/jb.135.3.998‑1007.1978 357428
    [Google Scholar]
  29. LernerT.R. LoveringA.L. BuiN.K. UchidaK. AizawaS.I. VollmerW. SockettR.E. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness.PLoS Pathog.201282e100252410.1371/journal.ppat.1002524 22346754
    [Google Scholar]
  30. LambertC. CadbyI.T. TillR. BuiN.K. LernerT.R. HughesW.S. LeeD.J. AlderwickL.J. VollmerW. SockettR.E. LoveringA.L. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus.Nat. Commun.201561888410.1038/ncomms9884 26626559
    [Google Scholar]
  31. BanksE.J. Valdivia-DelgadoM. BiboyJ. WilsonA. CadbyI.T. VollmerW. LambertC. LoveringA.L. SockettR.E. Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria.Nat. Commun.2022131150910.1038/s41467‑022‑29007‑y 35314810
    [Google Scholar]
  32. Bukowska-FanibandE. AnderssonT. LoodR. Studies on Bd0934 and Bd3507, Two Secreted Nucleases from Bdellovibrio bacteriovorus, reveal sequential release of nucleases during the predatory cycle.J. Bacteriol.202020218e00150e2010.1128/JB.00150‑20 32601070
    [Google Scholar]
  33. LambertC. HobleyL. ChangC.Y. FentonA. CapenessM. SockettL. A predatory patchwork: Membrane and surface structures of Bdellovibrio bacteriovorus.Adv. Microb. Physiol.20085431336110.1016/S0065‑2911(08)00005‑2 18929071
    [Google Scholar]
  34. DoigP. SastryP.A. HodgesR.S. LeeK.K. ParanchychW. IrvinR.T. Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili.Infect. Immun.199058112413010.1128/iai.58.1.124‑130.1990 1967166
    [Google Scholar]
  35. BaraboteR.D. RendulicS. SchusterS.C. SaierM.H. Jr Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus.Genomics200790442444610.1016/j.ygeno.2007.06.002 17706914
    [Google Scholar]
  36. KenQ. PauisersJ. T. Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes.PLoS Comput. Biol.2005130190020110.1371/journal.pcbi.0010027
    [Google Scholar]
  37. PérezJ. Moraleda-MuñozA. Marcos-TorresF.J. Muñoz-DoradoJ. Bacterial predation: 75 years and counting!Environ. Microbiol.201618376677910.1111/1462‑2920.13171 26663201
    [Google Scholar]
  38. HeelisP.F. HartmanR.F. RoseS.D. Energy and electron transfer processes in flavoprotein-mediated DNA repair.J. Photochem. Photobiol. Chem.1996951899810.1016/1010‑6030(95)04229‑6
    [Google Scholar]
  39. KavakliI.H. OzturkN. GulS. DNA repair by photolyases.Adv. Protein Chem. Struct. Biol.201911511910.1016/bs.apcsb.2018.10.003 30798929
    [Google Scholar]
  40. SancarA. SancarG.B. Escherichia coli DNA photolyase is a flavoprotein.J. Mol. Biol.1984172222322710.1016/S0022‑2836(84)80040‑6 6363715
    [Google Scholar]
  41. Garcia CostasA.M. PoudelS. MillerA.F. SchutG.J. LedbetterR.N. FixenK.R. SeefeldtL.C. AdamsM.W.W. HarwoodC.S. BoydE.S. PetersJ.W. Defining electron bifurcation in the electron-transferring flavoprotein family.J. Bacteriol.20171992144045710.1128/JB.00440‑17 28808132
    [Google Scholar]
  42. RodionovaI.A. Heidari TajabadiF. ZhangZ. RodionovD.A. SaierM.H.Jr A riboflavin transporter in Bdellovibrio exovorous JSS.Microbial Physiology2019291-6273410.1159/000501354 31509826
    [Google Scholar]
  43. Heidari TajabadiF. Medrano-SotoA. AhmadzadehM. Salehi JouzaniG. SaierM.H.Jr Comparative analyses of transport proteins encoded within the genomes of bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS.Microbial Physiology201727633234910.1159/000484563 29212086
    [Google Scholar]
  44. RubyE.G. McCabeJ.B. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J.J. Bacteriol.198616731066107010.1128/jb.167.3.1066‑1070.1986 3745115
    [Google Scholar]
  45. VahlingC.M. DuanY. LinH. Characterization of an ATP translocase identified in the destructive plant pathogen “Candidatus Liberibacter asiaticus”.J. Bacteriol.2010192383484010.1128/JB.01279‑09 19948801
    [Google Scholar]
  46. AmiriH. KarlbergO. AnderssonS.G.E. Deep origin of plastid/parasite ATP/ADP translocases.J. Mol. Evol.200356213715010.1007/s00239‑002‑2387‑0 12574860
    [Google Scholar]
  47. Schmitz-EsserS. LinkaN. CollingroA. BeierC.L. NeuhausH.E. WagnerM. HornM. ATP/ADP translocases: A common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae.J. Bacteriol.2004186368369110.1128/JB.186.3.683‑691.2004 14729693
    [Google Scholar]
  48. DashiffA. JunkaR.A. LiberaM. KadouriD.E. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus.J. Appl. Microbiol.2011110243144410.1111/j.1365‑2672.2010.04900.x 21114596
    [Google Scholar]
  49. TudorJ.J. ContiS.F. Characterization of bdellocysts of Bdellovibrio sp.J. Bacteriol.1977131131432210.1128/jb.131.1.314‑322.1977 873888
    [Google Scholar]
  50. AsokanG. RamadhanT. AhmedE. SanadH. WHO global priority pathogens list: A bibliometric analysis of medline-pubmed for knowledge mobilization to infection prevention and control practices in bahrain.Oman Med. J.201934318419310.5001/omj.2019.37 31110624
    [Google Scholar]
  51. KadouriD.E. ToK. ShanksR.M.Q. DoiY. Predatory bacteria: A potential ally against multidrug-resistant Gram-negative pathogens.PLoS One201385e6339710.1371/journal.pone.0063397 23650563
    [Google Scholar]
  52. SunY. YeJ. HouY. ChenH. CaoJ. ZhouT. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms.Jpn. J. Infect. Dis.201770548548910.7883/yoken.JJID.2016.405 28367880
    [Google Scholar]
  53. MonnappaA.K. DwidarM. SeoJ.K. HurJ.H. MitchellR.J. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells.Sci. Rep.201441381110.1038/srep03811 24448451
    [Google Scholar]
  54. IebbaV. TotinoV. SantangeloF. GagliardiA. CiotoliL. VirgaA. AmbrosiC. PompiliM. De BiaseR.V. SelanL. ArtiniM. PantanellaF. MuraF. PassarielloC. NicolettiM. NencioniL. TrancassiniM. QuattrucciS. SchippaS. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates.Front. Microbiol.20145JUN28010.3389/fmicb.2014.00280 24926292
    [Google Scholar]
  55. SaraleguiC. HerenciasC. HalperinA.V. de Dios-CaballeroJ. Pérez-VisoB. SalgadoS. LanzaV.F. CantónR. BaqueroF. PrietoM.A. del CampoR. Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates.Sci. Rep.20221211052310.1038/s41598‑022‑14378‑5 35732651
    [Google Scholar]
  56. AtterburyR.J. HobleyL. TillR. LambertC. CapenessM.J. LernerT.R. FentonA.K. BarrowP. SockettR.E. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks.Appl. Environ. Microbiol.201177165794580310.1128/AEM.00426‑11 21705523
    [Google Scholar]
  57. FindlayJ.S. Flick-SmithH.C. KeyserE. CooperI.A. WilliamsonE.D. OystonP.C.F. Predatory bacteria can protect SKH-1 mice from a lethal plague challenge.Sci. Rep.201991722510.1038/s41598‑019‑43467‑1 31076594
    [Google Scholar]
  58. ShanksR.M.Q. DavraV.R. RomanowskiE.G. BrothersK.M. StellaN.A. GodboleyD. KadouriD.E. An eye to a kill: Using predatory bacteria to control gram-negative pathogens associated with ocular infections.PLoS One201386e6672310.1371/journal.pone.0066723 23824756
    [Google Scholar]
  59. JangH. ChoiS.Y. MunW. JeongS.H. MitchellR.J. Predation of colistin- and carbapenem-resistant bacterial pathogenic populations and their antibiotic resistance genes in simulated microgravity.Microbiol. Res.202225512694110.1016/j.micres.2021.126941 34915266
    [Google Scholar]
  60. HespellR.B. RossonR.A. ThomashowM.F. RittenbergS.C. Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth.J. Bacteriol.197311331280128810.1128/jb.113.3.1280‑1288.1973 4570779
    [Google Scholar]
  61. MarkelovaN.Y. Interaction of bdellovibrio bacteriovorus with bacteria campylobacter jejuni and helicobacter pylori.Microbiology201079677777910.1134/S0026261710060093 21774160
    [Google Scholar]
  62. SureshM.S. RaiD. RajJ.M. PremanathR. MD. Predatory efficacy of Bdellovibrio stolpii isolated from the wastewater sources against the multidrug-resistant clinical isolates.J. Water Health202321214715910.2166/wh.2023.136
    [Google Scholar]
  63. GophnaU. CharleboisR.L. DoolittleW.F. Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus.Trends Microbiol.2006142646910.1016/j.tim.2005.12.008 16413191
    [Google Scholar]
  64. GuptaS. LemenzeA. DonnellyR.J. ConnellN.D. KadouriD.E. Keeping it together: Absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation.Res. Microbiol.20181694-523724310.1016/j.resmic.2018.03.002 29751066
    [Google Scholar]
  65. AndersonG.G. O’TooleG.A. Innate and induced resistance mechanisms of bacterial biofilms.Curr. Top. Microbiol. Immunol.20083228510510.1007/978‑3‑540‑75418‑3_5 18453273
    [Google Scholar]
  66. NúñezM.E. MartinM.O. ChanP.H. SpainE.M. Predation, death, and survival in a biofilm: Bdellovibrio investigated by atomic force microscopy.Colloids Surf. B Biointerfaces2005423-426327110.1016/j.colsurfb.2005.03.003 15893228
    [Google Scholar]
  67. DonlanR.M. Biofilms on central venous catheters: Is eradication possible?Curr. Top. Microbiol. Immunol.200832213316110.1007/978‑3‑540‑75418‑3_7 18453275
    [Google Scholar]
  68. KadouriD. O’TooleG.A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack.Appl. Environ. Microbiol.20057174044405110.1128/AEM.71.7.4044‑4051.2005 16000819
    [Google Scholar]
  69. DashiffA. KadouriD.E. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J.Mol. Oral Microbiol.2011261193410.1111/j.2041‑1014.2010.00592.x 21214870
    [Google Scholar]
  70. ChanyiR.M. KovalS.F. BrookeJ.S. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus.Environ. Microbiol. Rep.20168334335110.1111/1758‑2229.12384 26929093
    [Google Scholar]
  71. IebbaV. SantangeloF. TotinoV. NicolettiM. GagliardiA. De BiaseR.V. CucchiaraS. NencioniL. ConteM.P. SchippaS. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects.PLoS One201384e6160810.1371/journal.pone.0061608 23613881
    [Google Scholar]
  72. MukherjeeS. BrothersK.M. ShanksR.M.Q. KadouriD.E. Visualizing bdellovibrio bacteriovorus by using the tdtomato fluorescent protein.Appl. Environ. Microbiol.20168261653166110.1128/AEM.03611‑15 26712556
    [Google Scholar]
  73. BonfiglioG. NeroniB. RadocchiaG. PompilioA. MuraF. TrancassiniM. Di BonaventuraG. PantanellaF. SchippaS. Growth control of adherent-invasive escherichia coli (AIEC) by the Predator Bacteria Bdellovibrio bacteriovorus: A new therapeutic approach for crohn’s disease patients.Microorganisms2019811710.3390/microorganisms8010017 31861852
    [Google Scholar]
  74. GuptaS. TangC. TranM. KadouriD.E. Effect of predatory bacteria on human cell lines.PLoS One2016118e016124210.1371/journal.pone.0161242 27579919
    [Google Scholar]
  75. MonnappaA.K. BariW. ChoiS.Y. MitchellR.J. Investigating the responses of human epithelial cells to predatory bacteria.Sci. Rep.2016613348510.1038/srep33485 27629536
    [Google Scholar]
  76. RaghunathanD. RadfordP.M. GellC. NegusD. MooreC. TillR. TigheP.J. WheatleyS.P. Martinez-PomaresL. SockettR.E. TysonJ. Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential.Sci. Rep.201991429310.1038/s41598‑019‑40223‑3 30862785
    [Google Scholar]
  77. ShatzkesK. ChaeR. TangC. RamirezG.C. MukherjeeS. TsenovaL. ConnellN.D. KadouriD.E. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model.Sci. Rep.2015511289910.1038/srep12899 26250699
    [Google Scholar]
  78. ShatzkesK. TangC. SingletonE. ShuklaS. ZuenaM. GuptaS. DharaniS. RinaggioJ. ConnellN.D. KadouriD.E. Effect of predatory bacteria on the gut bacterial microbiota in rats.Sci. Rep.2017714348310.1038/srep43483 28262674
    [Google Scholar]
  79. MarineE. MilnerD.S. LambertC. SockettR.E. PosK.M. A novel method to determine antibiotic sensitivity in Bdellovibrio bacteriovorus reveals a DHFR-dependent natural trimethoprim resistance.Sci. Rep.2020101531510.1038/s41598‑020‑62014‑x 32210253
    [Google Scholar]
  80. AlonsoA. CampanarioE. MartínezJ.L. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa.Microbiology1999145102857286210.1099/00221287‑145‑10‑2857 10537207
    [Google Scholar]
  81. YahavD. ShepshelovichD. TauN. Cost analysis of new antibiotics to treat multidrug-resistant bacterial infections: Mind the gap.Infect. Dis. Ther.202110162163010.1007/s40121‑021‑00412‑y 33594649
    [Google Scholar]
  82. WestergaardJ.M. KramerT.T. Bdellovibrio and the intestinal flora of vertebrates.Appl. Environ. Microbiol.197734550651110.1128/aem.34.5.506‑511.1977 337896
    [Google Scholar]
  83. JacksonL. WhitingR.C. Reduction of an escherichia coli K12 population by bdellovibrio bacteriovorus under various In Vitro conditions of parasite:Host ratio, temperature, or pH.J. Food Prot.1992551185986210.4315/0362‑028X‑55.11.859 31084062
    [Google Scholar]
  84. CrothersS.F. RobinsonJ. Changes in the permeability of Escherichia coli during parasitization by Bdellovibrio bacteriovorus.Can. J. Microbiol.197117568969710.1139/m71‑111 4932409
    [Google Scholar]
  85. ChuW.H. ZhuW. Isolation of Bdellovibrio as biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in fish.Zoonoses Public Health201057425826410.1111/j.1863‑2378.2008.01224.x 19486499
    [Google Scholar]
  86. McConnellE.L. BasitA.W. MurdanS. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments.J. Pharm. Pharmacol.2010601637010.1211/jpp.60.1.0008 18088506
    [Google Scholar]
  87. MaierK.J. TullisR.E. The effects of diet and digestive cycle on the gastrointestinal tract pH values in the goldfish, Carassius auratus L., Mozambique tilapia, Oreochromis mossambicus (Peters), and channel catfish, Ictalurus punctatus (Rafinesque).J. Fish Biol.198425215116510.1111/j.1095‑8649.1984.tb04862.x
    [Google Scholar]
  88. BegleyM. GahanC.G.M. HillC. The interaction between bacteria and bile.FEMS Microbiol. Rev.200529462565110.1016/j.femsre.2004.09.003 16102595
    [Google Scholar]
  89. WilliamsL.E. CullenN. DeGiorgisJ.A. MartinezK.J. MelloneJ. OserM. WangJ. ZhangY. Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100.Microbiology2019165121315133010.1099/mic.0.000861 31592759
    [Google Scholar]
  90. ShatzkesK. SingletonE. TangC. ZuenaM. ShuklaS. GuptaS. DharaniS. OnyileO. RinaggioJ. ConnellN.D. KadouriD.E. Predatory bacteria attenuate klebsiella pneumoniae burden in rat lungs.MBio201676e01847e1610.1128/mBio.01847‑16 27834203
    [Google Scholar]
  91. RussoR. KolesnikovaI. KimT. GuptaS. PericleousA. KadouriD. ConnellN. Susceptibility of virulent yersinia pestis bacteria to predator bacteria in the lungs of mice.Microorganisms201871210.3390/microorganisms7010002 30577606
    [Google Scholar]
  92. WillisA.R. MooreC. Mazon-MoyaM. KrokowskiS. LambertC. TillR. MostowyS. SockettR.E. Injections of predatory bacteria work alongside host immune cells to treat shigella infection in zebrafish larvae.Curr. Biol.201626243343335110.1016/j.cub.2016.09.067 27889262
    [Google Scholar]
  93. MasudS. PrajsnarT.K. TorracaV. LamersG.E.M. BenningM. Van Der VaartM. MeijerA.H. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model.Autophagy201915579681210.1080/15548627.2019.1569297 30676840
    [Google Scholar]
  94. KeY. ChenZ. YangR. Yersinia pestis: Mechanisms of entry into and resistance to the host cell.Front. Cell. Infect. Microbiol.20133DEC10610.3389/fcimb.2013.00106 24400226
    [Google Scholar]
  95. TajabadiF.H. KarimianS.M. MohsenipourZ. MohammadiS. SalehiM. SattarzadehM. FakhariS. MomeniM. DahmardeheiM. FeizabadiM.M. Biocontrol treatment: Application of bdellovibrio bacteriovorus HD100 against burn wound infection caused by pseudomonas aeroginosa in mice.Burns202210.1016/j.burns.2022.08.020 36116995
    [Google Scholar]
  96. SilvaP.H.F. OliveiraL.F.F. CardosoR.S. RicoldiM.S.T. FigueiredoL.C. SalvadorS.L. PaliotoD.B. FurlanetoF.A.C. MessoraM.R. The impact of predatory bacteria on experimental periodontitis.J. Periodontol.20199091053106310.1002/JPER.18‑0485 30828815
    [Google Scholar]
  97. GarletG.P. Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints.J. Dent. Res.201089121349136310.1177/0022034510376402 20739705
    [Google Scholar]
  98. GravesD. Cytokines that promote periodontal tissue destruction.J. Periodontol.2008798s1585159110.1902/jop.2008.080183 18673014
    [Google Scholar]
  99. SilvaP.H.F. OliveiraL.F.F. CardosoR.S. SantanaS.I. CasarinR.C. ErvolinoE. SalvadorS.L. PaliotoD.B. FurlanetoF.A.C. MessoraM.R. Effects of bdellovibrio bacteriovorus HD100 on experimental periodontitis in rats.Mol. Oral Microbiol.202238215817010.1111/omi.12402 36495122
    [Google Scholar]
  100. KovalS.F. HynesS.H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus.J. Bacteriol.199117372244224910.1128/jb.173.7.2244‑2249.1991 2007549
    [Google Scholar]
  101. GerbinoE. CarasiP. MobiliP. SerradellM.A. Gómez-ZavagliaA. Role of S-layer proteins in bacteria.World J. Microbiol. Biotechnol.201531121877188710.1007/s11274‑015‑1952‑9 26410425
    [Google Scholar]
  102. KovalS.F. BayerM.E. Bacterial capsules: No barrier against Bdellovibrio.Microbiology1997143374975310.1099/00221287‑143‑3‑749 9084160
    [Google Scholar]
  103. SchembriM.A. DalsgaardD. KlemmP. Capsule shields the function of short bacterial adhesins.J. Bacteriol.200418651249125710.1128/JB.186.5.1249‑1257.2004 14973035
    [Google Scholar]
  104. ShemeshY. JurkevitchE. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey.Environ. Microbiol.200461121810.1046/j.1462‑2920.2003.00530.x 14686937
    [Google Scholar]
  105. AharonE. MookherjeeA. Pérez-MontañoF. Mateus da SilvaG. SathyamoorthyR. BurdmanS. JurkevitchE. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus.Res. Microbiol.20211727-810387810.1016/j.resmic.2021.103878 34492337
    [Google Scholar]
  106. RomanowskiE.G. GuptaS. PericleousA. KadouriD.E. ShanksR.M.Q. Clearance of gram-negative bacterial pathogens from the ocular surface by predatory bacteria.Antibiotics202110781010.3390/antibiotics10070810 34356731
    [Google Scholar]
  107. BoileauM.J. ManiR. BreshearsM.A. GilmourM. TaylorJ.D. ClinkenbeardK.D. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis.Am. J. Vet. Res.20167791017102810.2460/ajvr.77.9.1017 27580114
    [Google Scholar]
  108. CuiM. ZhengM. WirajaC. ChewS.W.T. MishraA. MayandiV. LakshminarayananR. XuC. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection.Adv. Sci.2021821210232710.1002/advs.202102327 34494724
    [Google Scholar]
  109. DoanT. AkileswaranL. AndersenD. JohnsonB. KoN. ShresthaA. ShestopalovV. LeeC.S. LeeA.Y. Van GelderR.N. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva.Invest. Ophthalmol. Vis. Sci.201657135116512610.1167/iovs.16‑19803 27699405
    [Google Scholar]
  110. ImH. SonS. MitchellR.J. GhimC.M. Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum.Sci. Rep.201771589610.1038/s41598‑017‑06272‑2 28725056
    [Google Scholar]
  111. SchwudkeD. LinscheidM. StrauchE. AppelB. ZähringerU. MollH. MüllerM. BreckerL. GronowS. LindnerB. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing α-D-Mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100.J. Biol. Chem.200327830275022751210.1074/jbc.M303012200 12743115
    [Google Scholar]
  112. ChonnA. CullisP.R. DevineD.V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes.J. Immunol.1991146124234424110.4049/jimmunol.146.12.4234 2040798
    [Google Scholar]
  113. HobleyL. SummersJ.K. TillR. MilnerD.S. AtterburyR.J. StroudA. CapenessM.J. GrayS. LeidenrothA. LambertC. ConnertonI. TwycrossJ. BakerM. TysonJ. KreftJ.U. SockettR.E. Dual predation by bacteriophage and bdellovibrio bacteriovorus can eradicate escherichia coli prey in situations where single predation cannot.J. Bacteriol.20202026e00629e1910.1128/JB.00629‑19 31907203
    [Google Scholar]
  114. ImH. ChoiS.Y. SonS. MitchellR.J. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities.Sci. Rep.2017711441510.1038/s41598‑017‑14567‑7 29089523
    [Google Scholar]
  115. JurkevitchE. MinzD. RamatiB. BarelG. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria.Appl. Environ. Microbiol.20006662365237110.1128/AEM.66.6.2365‑2371.2000 10831412
    [Google Scholar]
  116. LambertC. SockettR.E. Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms.FEMS Microbiol. Lett.2013340210911610.1111/1574‑6968.12075 23297829
    [Google Scholar]
  117. BratanisE. AnderssonT. LoodR. Bukowska-FanibandE. Biotechnological potential of bdellovibrio and like organisms and their secreted enzymes.Front. Microbiol.20201166210.3389/fmicb.2020.00662 32351487
    [Google Scholar]
  118. DwidarM. YokobayashiY. Controlling bdellovibrio bacteriovorus gene expression and predation using synthetic riboswitches.ACS Synth. Biol.20176112035204110.1021/acssynbio.7b00171 28812884
    [Google Scholar]
  119. JurkevitchE. Isolation and classification of Bdellovibrio and like organisms.Curr. Protoc. Microbiol.2012261)(26110.1002/9780471729259.mc07b01s2622875568
    [Google Scholar]
  120. FengS. TanC.H. CohenY. RiceS.A. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members.Environ. Microbiol.201618113923393110.1111/1462‑2920.13384 27328268
    [Google Scholar]
  121. CaoH. AnJ. ZhengW. HeS. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus.J. Invertebr. Pathol.2015130132010.1016/j.jip.2015.06.002 26146226
    [Google Scholar]
  122. CaoH. HeS. LuL. YangX. ChenB. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus.Antonie van Leeuwenhoek2014105242343010.1007/s10482‑013‑0079‑y 24271474
    [Google Scholar]
  123. QiZ. ZhangX.H. BoonN. BossierP. Probiotics in aquaculture of China: Current state, problems and prospect.Aquaculture20092901-2152110.1016/j.aquaculture.2009.02.012
    [Google Scholar]
  124. HuangX. GuY. ZhouH. XuL. CaoH. GaiC. Acinetobacter venetianus, a potential pathogen of red leg disease in freshwater-cultured whiteleg shrimp Penaeus vannamei.Aquacult. Rep.20201810054310.1016/j.aqrep.2020.100543
    [Google Scholar]
  125. LiuY. ZhuangB. YuanB. ZhangH. LiJ. WangW. LiR. DuL. DingP. JinY. Predatory bacterial hydrogels for topical treatment of infected wounds.Acta Pharm. Sin. B202313131532610.1016/j.apsb.2022.05.005 36815028
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230912161923
Loading
/content/journals/lddd/10.2174/1570180820666230912161923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test