Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Charcot Marie Tooth Disease-2 is a debilitating neurogenetic disorder that adversely affects peripheral neurons by disrupting mitochondrial activity. Mutated mitofusin-2 (MFN) is the main culprit behind disruptive mitochondrial function and is considered a therapeutic target in identifying drugs for treating this disease. This disease has no therapeutic medication except for supportive care.

Objective

The objective of the current study is to evaluate high-affinity medicinal compounds for mutated MFN-2 and describe their absorption, distribution, metabolism, excretion, and toxic attributes (ADMET).

Methods

For ADMET properties, 2,219 medicinal compounds were analyzed with AutoDock Vina using PyRX 0.9 software against MFN-2, SwissADME, and GUSAR.

Results

Results from screening studies revealed that three compounds (Liriodenine, Pinocembrin, and Vestitol) show an affinity for amino acids present in the predicted active interface of the MFN-2 protein. Moreover, these compounds render low toxicity and efficient ADME qualities, combined with blood-brain barrier permeability, drug-likeness, and lead-likeness.

Conclusion

Liriodenine, pinocembrin and vestitol are therapeutic compounds for CMT-2 treatment and should be used in further studies to confirm the results of this research.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230911165225
2023-09-19
2025-09-09
Loading full text...

Full text loading...

References

  1. GutmannL. ShyM. Update on Charcot–Marie–Tooth disease.Curr. Opin. Neurol.201528546246710.1097/WCO.0000000000000237 26263471
    [Google Scholar]
  2. BarretoL.C.L.S. OliveiraF.S. NunesP.S. de França CostaI.M.P. GarcezC.A. GoesG.M. NevesE.L.A. de Souza Siqueira QuintansJ. de Souza AraújoA.A. Epidemiologic study of Charcot-Marie-Tooth disease: A systematic review.Neuroepidemiology201646315716510.1159/000443706 26849231
    [Google Scholar]
  3. RamchandrenS. Charcot-Marie-Tooth disease and other genetic polyneuropathies.Continuum20172351360137710.1212/CON.0000000000000529 28968366
    [Google Scholar]
  4. ArnoldW.D. IsfortM. RoggenbuckJ. HoyleJ.C. The genetics of Charcot–Marie–Tooth disease: Current trends and future implications for diagnosis and management.Appl. Clin. Genet.2015823524310.2147/TACG.S69969 26527893
    [Google Scholar]
  5. RossorA.M. ShyM.E. ReillyM.M. Are we prepared for clinical trials in Charcot-Marie-Tooth disease?Brain Res.2020172914662510.1016/j.brainres.2019.146625 31899213
    [Google Scholar]
  6. BeręsewiczM. CharzewskiŁ. KrzyśkoK.A. KochańskiA. ZabłockaB. Molecular modelling of mitofusin 2 for a prediction for Charcot-Marie-Tooth 2A clinical severity.Sci. Rep.2018811690010.1038/s41598‑018‑35133‑9 30442897
    [Google Scholar]
  7. RochaA.G. FrancoA. KrezelA.M. RumseyJ.M. AlbertiJ.M. KnightW.C. BirisN. ZacharioudakisE. JanetkaJ.W. BalohR.H. KitsisR.N. Mochly-RosenD. TownsendR.R. GavathiotisE. DornG.W. MFN2 agonists reverse mitochondrial defects in preclinical models of charcot-marie-tooth disease type 2A.Science2018360638633634110.1126/science.aao1785
    [Google Scholar]
  8. FrancoA. DangX. WaltonE.K. HoJ.N. ZablockaB. LyC. MillerT.M. BalohR.H. ShyM.E. YooA.S. DornG.W.II Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A.eLife20209e6111910.7554/eLife.61119 33074106
    [Google Scholar]
  9. WolfC. ZimmermannR. ThaherO. BuenoD. WüllnerV. SchäferM.K.E. AlbrechtP. MethnerA. The Charcot–Marie tooth disease mutation R94Q in MFN2 decreases ATP production but increases mitochondrial respiration under conditions of mild oxidative stress.Cells2019810128910.3390/cells8101289 31640251
    [Google Scholar]
  10. LeeJ.H. ChoiB.O. Charcot-marie-tooth disease: Seventeen causative genes.J. Clin. Neurol.2006229210610.3988/jcn.2006.2.2.92 20396492
    [Google Scholar]
  11. ChoiB.O. NakhroK. ParkH.J. HyunY.S. LeeJ.H. KanwalS. JungS.C. ChungK.W. A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients.Clin. Genet.201587659459810.1111/cge.12432 24863639
    [Google Scholar]
  12. SchrepferE. ScorranoL. Mitofusins, from mitochondria to metabolism.Mol. Cell201661568369410.1016/j.molcel.2016.02.022 26942673
    [Google Scholar]
  13. DornG.W.II Mitofusin 2 dysfunction and disease in mice and men.Front. Physiol.20201178210.3389/fphys.2020.00782 32733278
    [Google Scholar]
  14. IwataK. ScorranoL. Finding a new balance to cure Charcot-Marie-Tooth 2A.J. Clin. Invest.201912941533153510.1172/JCI127820 30882369
    [Google Scholar]
  15. LiY.J. CaoY.L. FengJ.X. QiY. MengS. YangJ.F. ZhongY.T. KangS. ChenX. LanL. LuoL. YuB. ChenS. ChanD.C. HuJ. GaoS. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset.Nat. Commun.2019101491410.1038/s41467‑019‑12912‑0 31664033
    [Google Scholar]
  16. ZhouY. CarmonaS. MuhammadA.K.M.G. BellS. LanderosJ. VazquezM. HoR. FrancoA. LuB. DornG.W.II WangS. LutzC.M. BalohR.H. Restoring mitofusin balance prevents axonal degeneration in a Charcot-Marie-Tooth type 2A model.J. Clin. Invest.201912941756177110.1172/JCI124194 30882371
    [Google Scholar]
  17. FrancoA. KitsisR.N. FleischerJ.A. GavathiotisE. KornfeldO.S. GongG. BirisN. BenzA. QvitN. DonnellyS.K. ChenY. MennerickS. HodgsonL. Mochly-RosenD. DornG.W.II Correcting mitochondrial fusion by manipulating mitofusin conformations.Nature20165407631747910.1038/nature20156 27775718
    [Google Scholar]
  18. ShahF.H. SalmanS. IdreesJ. IdreesF. AkbarM.Y. In silico study of thymohydroquinone interaction with blood–brain barrier disrupting proteins.Future Sci. OA2020610FSO63210.2144/fsoa‑2020‑0115 33312701
    [Google Scholar]
  19. XuD. ZhangY. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization.Biophys. J.2011101102525253410.1016/j.bpj.2011.10.024 22098752
    [Google Scholar]
  20. van AaltenD.M.F. BywaterR. FindlayJ.B.C. HendlichM. HooftR.W.W. VriendG. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules.J. Comput. Aided Mol. Des.199610325526210.1007/BF00355047 8808741
    [Google Scholar]
  21. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx. Chemical biology.New York, NYHumana Press201524325010.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  22. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.2010312455461 19499576
    [Google Scholar]
  23. KumarS. KhatikG.L. MittalA. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo[3.2.1] octane scaffold.Curr. Comput. Drug Des.202016214515410.2174/1573409914666181019165821 30345926
    [Google Scholar]
  24. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  25. LaguninA. ZakharovA. FilimonovD. PoroikovV. QSAR modelling of rat acute toxicity on the basis of PASS prediction.Mol. Inform.2011302-324125010.1002/minf.201000151 27466777
    [Google Scholar]
  26. IvanovS.M. LaguninA.A. RudikA.V. FilimonovD.A. PoroikovV.V. ADVERPred–Web service for prediction of adverse effects of drugs.J. Chem. Inf. Model.201858181110.1021/acs.jcim.7b00568 29206457
    [Google Scholar]
  27. LaguninA. RudikA. DruzhilovskyD. FilimonovD. PoroikovV. WrenJ. ROSC-Pred: Web-service for rodent organ-specific carcinogenicity prediction.Bioinformatics201834471071210.1093/bioinformatics/btx678 29069300
    [Google Scholar]
  28. PoroikovV.V. FilimonovD.A. IhlenfeldtW.D. GloriozovaT.A. LaguninA.A. BorodinaY.V. StepanchikovaA.V. NicklausM.C. PASS biological activity spectrum predictions in the enhanced open NCI database browser.J. Chem. Inf. Comput. Sci.200343122823610.1021/ci020048r 12546557
    [Google Scholar]
  29. LaguninA. IvanovS. RudikA. FilimonovD. PoroikovV. DIGEP-Pred: Web service for in silico prediction of drug-induced gene expression profiles based on structural formula.Bioinformatics201329162062206310.1093/bioinformatics/btt322 23740741
    [Google Scholar]
  30. Velázquez-LiberaJ.L. Durán-VerdugoF. Valdés-JiménezA. Núñez-VivancoG. CaballeroJ. LigRMSD: A web server for automatic structure matching and RMSD calculations among identical and similar compounds in protein-ligand docking.Bioinformatics20203692912291410.1093/bioinformatics/btaa018 31926012
    [Google Scholar]
  31. Escobar-HenriquesM. JoaquimM. Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases.Front. Physiol.20191051710.3389/fphys.2019.00517 31156446
    [Google Scholar]
  32. BarbosaR.A. NunesT.L.G.M. NunesT.L.G.M. PaixãoA.O. NetoR.B. MouraS. Albuquerque JuniorR.L.C. CândidoE.A.F. PadilhaF.F. Quintans-JúniorL.J. GomesM.Z. CardosoJ.C. Hydroalcoholic extract of red propolis promotes functional recovery and axon repair after sciatic nerve injury in rats.Pharm. Biol.2016546993100410.3109/13880209.2015.1091844 26511070
    [Google Scholar]
  33. BotaO. FodorL. The influence of drugs on peripheral nerve regeneration.Drug Metab. Rev.201951326629210.1080/03602532.2019.1632885 31203666
    [Google Scholar]
  34. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.2020202013010.1155/2020/6565396 32148547
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230911165225
Loading
/content/journals/lddd/10.2174/1570180820666230911165225
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test