Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Atherosclerosis (AS) is a chronic inflammatory disease characterized by plaque formation and endothelial dysfunction. Under pro-inflammatory conditions, the endothelial-mesenchymal transition (EndMT) plays an important role in the pathogenesis of AS. Resveratrol (RES) is a natural polyphenol in traditional Chinese medicines, which has been proven to possess anti-AS effects. However, the mechanism of RES treating AS through EndMT is not clear at present.

Methods

RES targets were screened using databases such as SwissTargetPrediction and TargetNet, and AS and EndMT targets were searched using databases such as OMIM and DisGeNET. With the help of Venny 2.1, the key targets were selected by intersection. Next, the protein-protein interaction (PPI) network was constructed through the STRING 11.0 platform and Cytoscape software; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations were performed using DAVID. Further, Cytoscape was used to construct a drug-component-gene target-pathway network diagram to identify the core components and genes. Subsequently, an AS rat model was established. The blood lipid level of rats was detected by an automatic biochemical analyzer, and the expression level of the target protein was measured by western blotting.

Results

Through network pharmacology analysis, 37 potential targets for RES treating AS and EndMT were identified, and the core targets for RES treating AS consisted of AKT1, TNF, MIMP9, and PPARG. GO enrichment analysis indicated that the treatment of AS with RES mainly involved the migration and proliferation of epithelial and endothelial cells. The KEGG pathway enrichment analysis revealed that the enrichment of TNF and Rap1 signaling pathways was most significant. Besides, RES effectively reduced the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) in the serum of AS rats, increased the level of high-density lipoprotein cholesterol (HDL-C), and significantly cut down the atherosclerosis index (AI). Twist1, calponin, α-SMA and VE-cadherin were considered as EndMT indexes. The results of the western blot demonstrated that the protein levels of Twist1, calponin and α-SMA were significantly decreased, while the protein expression level of VE-cadherin was notably increased in rats treated with RES. Moreover, RES could also reduce the expression levels of Rap1 and Epac1 proteins.

Conclusion

RES is an effective anti-AS drug. Briefly, RES can effectively improve the blood lipid level of AS patients, regulate the expression of EndMT-related proteins, and alleviate the dysfunction of endothelial cells. Notably, the functions of RES are closely associated with the EPAC1-Rap1 pathway.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230719121428
2023-09-21
2025-09-06
Loading full text...

Full text loading...

References

  1. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  2. BarqueraS. Pedroza-TobíasA. MedinaC. Hernández-BarreraL. Bibbins-DomingoK. LozanoR. MoranA.E. Global overview of the epidemiology of atherosclerotic cardiovascular disease.Arch. Med. Res.201546532833810.1016/j.arcmed.2015.06.006 26135634
    [Google Scholar]
  3. KongP. CuiZ.Y. HuangX.F. ZhangD.D. GuoR.J. HanM. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention.Signal Transduct. Target. Ther.20227113110.1038/s41392‑022‑00955‑7 35459215
    [Google Scholar]
  4. XuL. Mechanism of resveratrol against atherosclerosis.J. Apoplexy Nerv. Dis201835566568
    [Google Scholar]
  5. HelmkeA. CasperJ. NordlohneJ. DavidS. HallerH. ZeisbergE.M. VietinghoffS. Endothelial‐to‐mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function.FASEB J.20193322278228910.1096/fj.201801238R 30260706
    [Google Scholar]
  6. Piera-VelazquezS. JimenezS.A. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases.Physiol. Rev.20199921281132410.1152/physrev.00021.2018 30864875
    [Google Scholar]
  7. SouilholC. HarmsenM.C. EvansP.C. KrenningG. Endothelial–mesenchymal transition in atherosclerosis.Cardiovasc. Res.2018114456557710.1093/cvr/cvx253 29309526
    [Google Scholar]
  8. ChenP.Y. QinL. BaeyensN. LiG. AfolabiT. BudathaM. TellidesG. SchwartzM.A. SimonsM. Endothelial-to-mesenchymal transition drives atherosclerosis progression.J. Clin. Invest.2015125124514452810.1172/JCI82719 26517696
    [Google Scholar]
  9. EvrardS.M. LecceL. MichelisK.C. Nomura-KitabayashiA. PandeyG. PurushothamanK.R. d’EscamardV. LiJ.R. HadriL. FujitaniK. MorenoP.R. BenardL. RimmeleP. CohainA. MechamB. RandolphG.J. NabelE.G. HajjarR. FusterV. BoehmM. KovacicJ.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability.Nat. Commun.201671185310.1038/ncomms11853
    [Google Scholar]
  10. AnbaraT. SharifiM. AboutalebN. Endothelial to mesenchymal transition in the cardiogenesis and cardiovascular diseases.Curr. Cardiol. Rev.202016430631410.2174/18756557MTAwsMjA3w 31393254
    [Google Scholar]
  11. QinW. ZhangL. LiZ. XiaoD. ZhangY. ZhangH. MokemboJ.N. MonayoS.M. JhaN.K. KopylovP. ShchekochikhinD. ZhangY. Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis.Theranostics202010125276528910.7150/thno.42470 32373212
    [Google Scholar]
  12. AdhyaruB.B. JacobsonT.A. Safety and efficacy of statin therapy.Nat. Rev. Cardiol.2018151275776910.1038/s41569‑018‑0098‑5 30375494
    [Google Scholar]
  13. BarkerA.L. MorelloR. ThaoL.T.P. SeemanE. WardS.A. SandersK.M. CummingR.G. PascoJ.A. EbelingP.R. WoodsR.L. WolfeR. KhoslaS. HussainS.M. RonaldsonK. NewmanA.B. WilliamsonJ.D. McNeilJ.J. Daily low-dose aspirin and risk of serious falls and fractures in healthy older people.JAMA Intern. Med.2022182121289129710.1001/jamainternmed.2022.5028 36342703
    [Google Scholar]
  14. InchingoloA.D. MalcangiG. InchingoloA.M. PirasF. SettanniV. GarofoliG. PalmieriG. CeciS. PatanoA. De LeonardisN. Di PedeC. MontenegroV. AzzolliniD. GaribaldiM.G. KrutiZ. TarulloA. ColocciaG. ManciniA. RaponeB. SemjonovaA. HazballaD. D’OriaM.T. JonesM. MacchiaL. BordeaI.R. ScaranoA. LorussoF. TartagliaG.M. MasperoC. Del FabbroM. NucciL. FeratiK. FeratiA.B. BrienzaN. CorrieroA. InchingoloF. DipalmaG. Benefits and implications of resveratrol supplementation on microbiota modulations: A systematic review of the literature.Int. J. Mol. Sci.2022237402710.3390/ijms23074027 35409389
    [Google Scholar]
  15. GowdV. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease.J. Nutr. Biochem.202210910910110.1016/j.jnutbio.2022.109101
    [Google Scholar]
  16. FarkhondehT. FolgadoS.L. Pourbagher-ShahriA.M. AshrafizadehM. SamarghandianS. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway.Biomed. Pharmacother.202012711023410.1016/j.biopha.2020.110234
    [Google Scholar]
  17. BiY.G. Research progress of resveratrol in the treatment of cardiovascular disease.J. Med. Res.2016454510
    [Google Scholar]
  18. KangB.T. GuoM. SunX.Y. TianS.W. LiY.H. JinJ. JiaL.Y. CaoH.L. Research progress of resveratrol relieving atherosclerosis.Shaanxi Medical J.20204915271530
    [Google Scholar]
  19. GuoS. ZhouY. XieX. Resveratrol inhibiting TGF/ERK signaling pathway can improve atherosclerosis: backgrounds, mechanisms and effects.Biomed. Pharmacother.202215511377510.1016/j.biopha.2022.113775
    [Google Scholar]
  20. VoloshynaI. HussainiS.M. ReissA.B. Resveratrol in cholesterol metabolism and atherosclerosis.J. Med. Food201215976377310.1089/jmf.2012.0025 22856383
    [Google Scholar]
  21. PrasadK. Resveratrol, wine, and atherosclerosis.Int. J. Angiol.201221171810.1007/s00547‑004‑1060‑4 23450206
    [Google Scholar]
  22. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review.J. Tradit. Chin. Med.202242347948610.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
  23. HongM. WuY. ZhangH. GuJ. ChenJ. GuanY. QinX. LiY. CaoJ. Network pharmacology and experimental analysis to reveal the mechanism of Dan-Shen-Yin against endothelial to mesenchymal transition in atherosclerosis.Front. Pharmacol.20221394619310.3389/fphar.2022.946193
    [Google Scholar]
  24. WuH. ZhangZ. WangY. ZhangT. QiS. TangY. GaoX. Investigation into the properties of l-5-methyltetrahydrofolate and seal oil as a potential atherosclerosis intervention in rats.J. Nutr. Sci. Vitaminol.2022682879610.3177/jnsv.68.87 35491209
    [Google Scholar]
  25. ZhouL. LongJ. SunY. ChenW. QiuR. YuanD. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE(-/-) mice and inhibits the activation of CD4(+) T cells.Nutr. Metab.2020174110.1186/s12986‑020‑00461‑z
    [Google Scholar]
  26. XuS.F. DuG.H. AbulikimK. CaoP. TanH.B. Verification and defined dosage of sodium pentobarbital for a urodynamic study in the possibility of survival experiments in female rat.BioMed Res. Int.20202020610949710.1155/2020/6109497
    [Google Scholar]
  27. LiuL. ShiZ. JiX. ZhangW. LuanJ. ZahrT. QiangL. Adipokines, adiposity, and atherosclerosis.Cell. Mol. Life Sci.202279527210.1007/s00018‑022‑04286‑2 35503385
    [Google Scholar]
  28. MahmoudM.M. Serbanovic-CanicJ. FengS. SouilholC. XingR. HsiaoS. MammotoA. ChenJ. AriaansM. FrancisS.E. Van der HeidenK. RidgerV. EvansP.C. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail.Sci. Rep.201771337510.1038/s41598‑017‑03532‑z 28611395
    [Google Scholar]
  29. MammotoT. MuyleartM. KonduriG.G. MammotoA. Twist1 in Hypoxia-induced Pulmonary Hypertension through Transforming Growth Factor-β–Smad Signaling.Am. J. Respir. Cell Mol. Biol.201858219420710.1165/rcmb.2016‑0323OC 28915063
    [Google Scholar]
  30. RotllanN. WanschelA.C. Fernández-HernandoA. SalernoA.G. OffermannsS. SessaW.C. Fernández-HernandoC. Genetic evidence supports a major role for Akt1 in VSMCs during atherogenesis.Circ. Res.2015116111744175210.1161/CIRCRESAHA.116.305895 25868464
    [Google Scholar]
  31. WeiY. Nazari-JahantighM. ChanL. ZhuM. HeyllK. Corbalán-CamposJ. HartmannP. ThiemannA. WeberC. SchoberA. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis.Circulation2013127151609161910.1161/CIRCULATIONAHA.112.000736 23513069
    [Google Scholar]
  32. MomiS. FalcinelliE. PetitoE. Ciarrocca TarantaG. OssoliA. GreseleP. Matrix metalloproteinase-2 on activated platelets triggers endothelial PAR-1 initiating atherosclerosis.Eur. Heart J.202243650451410.1093/eurheartj/ehab631 34529782
    [Google Scholar]
  33. TaoY. ZhangL. YangR. YangY. JinH. ZhangX. HuQ. HeB. ShenZ. ChenP. Corilagin ameliorates atherosclerosis by regulating MMP-1, -2, and -9 expression in vitro and in vivo.Eur. J. Pharmacol.202190617420010.1016/j.ejphar.2021.174200
    [Google Scholar]
  34. CroftM. DuanW. ChoiH. EunS.Y. MadireddiS. MehtaA. TNF superfamily in inflammatory disease: Translating basic insights.Trends Immunol.201233314415210.1016/j.it.2011.10.004 22169337
    [Google Scholar]
  35. SonarS. LalG. Factor superfamily in neuroinflammation and autoimmunity.Front. Immunol.2015636410.3389/fimmu.2015.00364
    [Google Scholar]
  36. JinZ. LiJ. PiJ. ChuQ. WeiW. DuZ. QingL. ZhaoX. WuW. Geniposide alleviates atherosclerosis by regulating macrophage polarization via the FOS/MAPK signaling pathway.Biomed. Pharmacother.202012511001510.1016/j.biopha.2020.110015
    [Google Scholar]
  37. GuoY.J. PanW.W. LiuS.B. ShenZ.F. XuY. HuL.L. ERK/MAPK signalling pathway and tumorigenesis (Review).Exp. Ther. Med.20201931997200710.3892/etm.2020.8454 32104259
    [Google Scholar]
  38. SaxtonR.A. SabatiniD.M. mTOR Signaling in Growth, Metabolism, and Disease.Cell2017168696097610.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  39. LamaliceL. Le BoeufF. HuotJ. Endothelial cell migration during angiogenesis.Circ. Res.2007100678279410.1161/01.RES.0000259593.07661.1e 17395884
    [Google Scholar]
  40. MineoC. Lipoprotein receptor signalling in atherosclerosis.Cardiovasc. Res.202011671254127410.1093/cvr/cvz338 31834409
    [Google Scholar]
  41. FanD. LiuC. ZhangZ. HuangK. WangT. ChenS. LiZ. Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease.Molecules20222721752410.3390/molecules27217524 36364370
    [Google Scholar]
  42. WangJ.C. GengY. HanY. LuoH.N. ZhangY.S. Dynamic expression of Epac and Rap1 in mouse oocytes and preimplantation embryos.Exp. Ther. Med.201816252352810.3892/etm.2018.6253 30116310
    [Google Scholar]
  43. LiuC. TakahashiM. LiY. DillonT.J. KaechS. StorkP.J.S. The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope.Mol. Cell. Biol.201030163956396910.1128/MCB.00242‑10 20547757
    [Google Scholar]
  44. PanY. LiuJ. RenJ. LuoY. SunX. pac: A promising therapeutic target for vascular diseases: A review.Front. Pharmacol.20221392915210.3389/fphar.2022.929152
    [Google Scholar]
  45. SinghB. KosuruR. LakshmikanthanS. Sorci-ThomasM.G. ZhangD.X. SparapaniR. Vasquez-VivarJ. ChrzanowskaM. Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis.Arterioscler. Thromb. Vasc. Biol.202141263865010.1161/ATVBAHA.120.315401 33267664
    [Google Scholar]
  46. PerdomoL. Vidal-GómezX. SoletiR. VergoriL. DulucL. ChwastyniakM. BisserierM. Le LayS. VillardA. SimardG. MeilhacO. Lezoualc’hF. KhantalinI. VeerapenR. DuboisS. BoursierJ. HenniS. GagnadouxF. PinetF. AndriantsitohainaR. MartínezM.C. Large extracellular vesicle-associated rap1 accumulates in atherosclerotic plaques, correlates with vascular risks and is involved in atherosclerosis.Circ. Res.2020127674776010.1161/CIRCRESAHA.120.317086 32539601
    [Google Scholar]
  47. CaiY. SukhovaG.K. WongH.K. XuA. TergaonkarV. VanhoutteP.M. TangE.H.C. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions.Cell Cycle201514223580359210.1080/15384101.2015.1100771 26505215
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230719121428
Loading
/content/journals/lddd/10.2174/1570180820666230719121428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test