Skip to content
2000
Volume 18, Issue 7
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background: α-Glucosidase is an important hydrolytic enzyme playing a vital role in digestion of carbohydrates. It catalyzes the final step of carbohydrates digestion in biological systems and converts unabsorbed oligosaccharides and disaccharides into monosaccharides, thus resulting in hyperglycemia for diabetic patients. In this respect, it has been considered as a therapeutic target for the treatment of type 2 diabetes since the enzyme inhibition delays carbohydrate digestion and monosaccharide absorption and subsequently reduces postprandial plasma glucose levels. Objective: In this study, fourteen 2-(substitutedphenylamino)quinazolin-4(3H)-one derivatives were synthesized and evaluated for their α-glucosidase inhibitory activities. Methods: The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The biological activity and enzyme inhibition kinetic studies were performed by spectrophotometrical method using microplate reader. Physicochemical and drug-likeness properties of selected compounds were predicted by in silico method. Results: The biological activity results revealed that all of the synthesized compounds showed more potent α-glucosidase inhibitory activity in the range of IC = 58 ± 2 - 375 ± 15 μM when compared to the standard drug acarbose (IC = 892 ± 7 μM). Among the tested compounds, compound 12 bearing chlorine substituent at ortho position on N-phenyl ring displayed the highest inhibition with an IC value of 58 ± 2 μM against α-glucosidase. Furthermore, the enzyme inhibition kinetic study of the most active compound 12 indicated that the compound inhibited the α-glucosidase enzyme as uncompetitive with a Ki value of 63.46 μM. On the other hand, physicochemical and drug-likeness properties of selected compounds were predicted by in silico method. According to the results, it can be speculated that synthesized 2-phenylaminoquinazolin-4(3H)-one derivatives possessed favorable drug-likeness and pharmacokinetic profiles. Conclusion: In the light of results, 2-(substitutedphenylamino)quinazolin-4(3H)-one derivatives may serve as lead compounds to develop novel α-glucosidase inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180818999201224121929
2021-07-01
2025-09-26
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/1570180818999201224121929
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test