Skip to content
2000
Volume 10, Issue 8
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

The elevated level of dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) is associated with the pathology of neurodegenerative diseases and has been implicated in some neurobiological alterations of Down syndrome, such as mental retardation. In the present article, a pharmacophore based 3D-QSAR model was developed for a series of leucettines possessing Dyrk1A inhibitory activity. The crucial molecular features observed in the developed pharmacophore model that account for binding affinity of ligands with the enzyme, include three H-bond acceptors (A), one positive ionic site (P) and one hydrophobic aromatic ring (R). Excellent statistical results of QSAR model such as good correlation coefficient (r > 0.9), higher F value (F > 20), excellent predictive power (Q2 > 0.6) and higher enrichment of known actives during virtual screening application strongly suggest that the developed model will be highly useful in designing new inhibitors and for predicting activity of new inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/15701808113100890024
2013-10-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/15701808113100890024
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test