
Full text loading...
Molecular modelling studies of complexes of 2-phenylamino-6-oxopurines and HSV1 thymidine kinases (TK) revealed two distinct modes of binding. The “acyclovir mode” was occupied by 9R (9-substituted) compounds, and was identical to that revealed by crystal structures of acyclovir and 2-phenylamino-9-(4-hydroxybutyl)-6-oxopurine (HBPG) bound to HSV1 TK. The “base mode” was occupied by 9H compounds such as 2-[3-(trifluoromethyl)phenylamino]-6- oxopurine (m-CF3PG) , and is characterized by rotation of the inhibitor by 180° around the minor axis of the purine ring. In an attempt to understand the molecular basis for affinity of 2-phenylamino-6-oxopurines for TKs, we cloned and expressed site-directed HSV2 TK mutants to create proteins with inhibitor-interacting domains identical with those of HSV1 TK. The enzyme kinetic properties and inhibitory action of several 2-phenylamino-6-oxopurines showed that the changes were not consistently correlated with differences in affinity of inhibitors to the TKs.