Skip to content
2000
Volume 6, Issue 6
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Aims: One promising approach for treatment of Alzheimer's disease (AD) is use of anti-amyloid therapies, based on the hypothesis that increases in amyloid-beta (Aβ) deposits in brain are a major cause of AD. Several groups have focused on Aβ immunotherapy with some success. Small molecules derivatives of Congo red have been shown to inhibit Aβ aggregation and protect against Aβ neurotoxicity in vitro. The agents described here are all small molecule Aβ- binding agents (SMAβBA's) derivatives of Congo red. Main Methods: Here, we have explored the anti-amyloid properties of these SMAβBA's in mice doubly transgenic for human prensenilin-1 (PS1) and APP gene mutations that cause early-onset AD. Mice were treated with either methoxy- X04, X:EE:B34 and X:034-3-OMe1. After treatment, brains were examined for Aβ-deposition, using histochemistry, and soluble and insoluble Aβ levels were determined using ELISA. Key Findings: A range of anti-amyloid activity was observed with these three compounds. PS1/APP mice treated with methoxy-X04 and X:EE:B34 showed decrease in total Aβ load, a decrease in Aβ fibril load, and a decrease in average plaque size. Treatment with methoxy-X04 also resulted in a decrease in insoluble Aβ levels. The structurally similar compound, X:034:3-OMe1, showed no significant effect on any of these measures. The effectiveness of the SMAβBA's may be related to a combination of binding affinity for Aβ and entry into brain, but other factors appear to apply as well. Significance: These data suggest that SMAβBA's may significantly decrease amyloid burden in brain during the pathogenesis of AD and could be useful therapeutics alone, or in combination with immunotherapy.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/157018009789057526
2009-09-01
2025-09-10
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/157018009789057526
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's Disease; Amyloid β; Congo Red; Methoxy-X04; Transgenic mice
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test