Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Dysregulation of cellular signaling pathways leads to changes in proliferation, differentiation, and apoptosis, leading to cancer. This review aims to provide insight into the major three signaling pathways implicated in cancer development and progression: the Hedgehog (Hh), Phosphoinositide 3-kinase (PI3K), and Notch pathways. Abnormal activation of the Hedgehog pathway, which has been linked to several malignancies, including medulloblastoma and basal cell carcinoma, is primarily responsible for controlling the phases of embryonic development and tissue homeostasis. The intricate involvement of Hh signaling in cancer stem cell maintenance, epithelial-mesenchymal transition, and tumor microenvironment modulation underscores its significance as a therapeutic target. Similarly, dysregulation of the PI3K pathway, a crucial mediator of cell growth, survival, and metabolism, is prevalent across multiple cancer types. Mutations in PI3K pathway components lead to uncontrolled cell proliferation and evasion of apoptosis, highlighting its potential as a therapeutic avenue. Various inhibitors targeting PI3K and its downstream effectors have shown promise in preclinical and clinical settings. Additionally, the Notch signaling pathway, crucial for cell fate determination and tissue patterning during development, exhibits dysregulated activity in numerous cancers. Notch pathway alterations contribute to tumor initiation, progression, and metastasis, presenting opportunities for targeted therapies. The review discusses current therapeutic strategies targeting these pathways, including small-molecule inhibitors, monoclonal antibodies, and combination therapies. Challenges, such as drug resistance and toxicity are addressed, along with emerging therapeutic approaches to enhance treatment efficacy. In conclusion, understanding the intricate crosstalk and dysregulation of signaling pathways in cancer provides valuable insights into disease mechanisms and therapeutic avenues, paving the way for more effective and personalized cancer treatments.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808353919241126110520
2024-11-29
2025-08-21
Loading full text...

Full text loading...

References

  1. ReichertJ. WengerJ.B. Development trends for new cancer therapeutics and vaccines.Drug Discov. Today2008131-2303710.1016/j.drudis.2007.09.00318190861
    [Google Scholar]
  2. ZouW. Immunosuppressive networks in the tumour environment and their therapeutic relevance.Nat. Rev. Cancer20055426327410.1038/nrc158615776005
    [Google Scholar]
  3. KerruN. SinghP. KoorbanallyN. RajR. KumarV. Recent advances (2015–2016) in anticancer hybrids.Eur. J. Med. Chem.201714217921210.1016/j.ejmech.2017.07.03328760313
    [Google Scholar]
  4. MareelM. LeroyA. Clinical, cellular, and molecular aspects of cancer invasion.Physiol. Rev.200383233737610.1152/physrev.00024.200212663862
    [Google Scholar]
  5. WescheJ. HaglundK. HaugstenE.M. Fibroblast growth factors and their receptors in cancer.Biochem. J.2011437219921310.1042/BJ2010160321711248
    [Google Scholar]
  6. LiuM. JuX. ZouJ. ShiJ. JiaG. Recent researches for dual Aurora target inhibitors in antitumor field.Eur. J. Med. Chem.202020311249810.1016/j.ejmech.2020.11249832693295
    [Google Scholar]
  7. KastanM.B. BartekJ. Cell-cycle checkpoints and cancer.Nature2004432701531632310.1038/nature0309715549093
    [Google Scholar]
  8. KoiralaM. DiPaolaM. Overcoming cancer resistance: Strategies and modalities for effective treatment.Biomedicines2024128180110.3390/biomedicines1208180139200265
    [Google Scholar]
  9. RamosA. SadeghiS. TabatabaeianH. Battling chemoresistance in cancer: root causes and strategies to uproot them.Int. J. Mol. Sci.20212217945110.3390/ijms2217945134502361
    [Google Scholar]
  10. Assed BastosD. Coelho RibeiroS. de FreitasD. HoffP.M. Review: Combination therapy in high-risk stage II or stage III colon cancer: Current practice and future prospects.Ther. Adv. Med. Oncol.20102426127210.1177/175883401036790521789139
    [Google Scholar]
  11. MeaderN. KingK. Moe-ByrneT. WrightK. GrahamH. PetticrewM. PowerC. WhiteM. SowdenA.J. A systematic review on the clustering and co-occurrence of multiple risk behaviours.BMC Public Health201616165710.1186/s12889‑016‑3373‑627473458
    [Google Scholar]
  12. TaniguchiK. KarinM. NF-κB, inflammation, immunity and cancer: coming of age.Nat. Rev. Immunol.201818530932410.1038/nri.2017.14229379212
    [Google Scholar]
  13. GottesmanM.M. Mechanisms of cancer drug resistance.Annu. Rev. Med.200253161562710.1146/annurev.med.53.082901.10392911818492
    [Google Scholar]
  14. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: An evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc359924060863
    [Google Scholar]
  15. GottesmanM.M. FojoT. BatesS.E. Multidrug resistance in cancer: Role of ATP–dependent transporters.Nat. Rev. Cancer200221485810.1038/nrc70611902585
    [Google Scholar]
  16. EckfordP.D.W. SharomF.J. ABC efflux pump-based resistance to chemotherapy drugs.Chem. Rev.200910972989301110.1021/cr900022619583429
    [Google Scholar]
  17. Kartal-YandimM. Adan-GokbulutA. BaranY. Molecular mechanisms of drug resistance and its reversal in cancer.Crit. Rev. Biotechnol.201636471672610.3109/07388551.2015.101595725757878
    [Google Scholar]
  18. SeifuM.F. NathL.K. Polymer-drug conjugates: Novel carriers for cancer chemotherapy.Polymer Plastics Technol. Mater.2019582158171
    [Google Scholar]
  19. YangS. LiuG. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma.Oncol. Lett.20171331041104710.3892/ol.2017.555728454211
    [Google Scholar]
  20. MannR.K. BeachyP.A. Novel lipid modifications of secreted protein signals.Annu. Rev. Biochem.200473189192325924008
    [Google Scholar]
  21. BurkeR. NellenD. BellottoM. HafenE. SentiK.A. DicksonB.J. BaslerK. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells.Cell199999780381510.1016/S0092‑8674(00)81677‑310619433
    [Google Scholar]
  22. TaipaleJ. CooperM.K. MaitiT. BeachyP.A. Patched acts catalytically to suppress the activity of Smoothened.Nature2002418690089289610.1038/nature0098912192414
    [Google Scholar]
  23. YuJ.S.L. CuiW. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination.Development2016143173050306010.1242/dev.13707527578176
    [Google Scholar]
  24. RascioF. SpadaccinoF. RocchettiM.T. CastellanoG. StalloneG. NettiG.S. RanieriE. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review.Cancers (Basel)20211316394910.3390/cancers1316394934439105
    [Google Scholar]
  25. FrumanD.A. RommelC. PI3K and cancer: lessons, challenges and opportunities.Nat. Rev. Drug Discov.201413214015610.1038/nrd420424481312
    [Google Scholar]
  26. CarneroA. Blanco-AparicioC. RennerO. LinkW. LealJ. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications.Curr. Cancer Drug Targets20088318719810.2174/15680090878429365918473732
    [Google Scholar]
  27. SunshineJ. TaubeJ.M. PD-1/PD-L1 inhibitors.Curr. Opin. Pharmacol.201523323810.1016/j.coph.2015.05.01126047524
    [Google Scholar]
  28. XinM. JiX. De La CruzL.K. TharejaS. WangB. Strategies to target the Hedgehog signaling pathway for cancer therapy.Med. Res. Rev.201838387091310.1002/med.2148229315702
    [Google Scholar]
  29. EvangelistaM. TianH. de SauvageF.J. The hedgehog signaling pathway in cancer.Clin. Cancer Res.200612205924592810.1158/1078‑0432.CCR‑06‑173617062662
    [Google Scholar]
  30. McMillanR. MatsuiW. Molecular pathways: the hedgehog signaling pathway in cancer.Clin. Cancer Res.201218184883488810.1158/1078‑0432.CCR‑11‑250922718857
    [Google Scholar]
  31. KatohY. KatohM. Hedgehog signaling pathway and gastric cancer.Cancer Biol. Ther.20054101050105410.4161/cbt.4.10.218416258256
    [Google Scholar]
  32. GonnissenA. IsebaertS. HaustermansK. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened.Oncotarget2015616138991391310.18632/oncotarget.422426053182
    [Google Scholar]
  33. LiY. MaitahM.Y. AhmadA. KongD. BaoB. SarkarF.H. Targeting the Hedgehog signaling pathway for cancer therapy.Expert Opin. Ther. Targets2012161496610.1517/14728222.2011.61736722243133
    [Google Scholar]
  34. JiangJ. Hedgehog signaling mechanism and role in cancer. In: Seminars in Cancer Biology.Academic Press202210.1016/j.semcancer.2021.04.003
    [Google Scholar]
  35. ZengX. JuD. Hedgehog signaling pathway and autophagy in cancer.Int. J. Mol. Sci.2018198227910.3390/ijms1908227930081498
    [Google Scholar]
  36. SiegelR. NaishadhamD. JemalA. Cancer statistics, 2013.CA Cancer J. Clin.2013631113010.3322/caac.2116623335087
    [Google Scholar]
  37. DavidsonM.R. GazdarA.F. ClarkeB.E. The pivotal role of pathology in the management of lung cancer.J. Thorac. Dis.20135S463S47824163740
    [Google Scholar]
  38. WatkinsD.N. BermanD.M. BaylinS.B. Hedgehog signaling: progenitor phenotype in small-cell lung cancer.Cell Cycle20032319519710.4161/cc.2.3.37812734424
    [Google Scholar]
  39. SimonM. ArgirisA. MurrenJ.R. Progress in the therapy of small cell lung cancer.Crit. Rev. Oncol. Hematol.200449211913310.1016/S1040‑8428(03)00118‑515012973
    [Google Scholar]
  40. TurrisiA.T. ShermanC.A. The treatment of limited small cell lung cancer.Eur. J. Cancer200238227929110.1016/S0959‑8049(01)00364‑111803144
    [Google Scholar]
  41. MizuaraiS. KawagishiA. KotaniH. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines.Mol. Cancer2009814410.1186/1476‑4598‑8‑4419575820
    [Google Scholar]
  42. SigafoosA.N. ParadiseB.D. Fernandez-ZapicoM.E. Hedgehog/GLI signaling pathway: transduction, regulation, and implications for disease.Cancers (Basel)20211314341010.3390/cancers1314341034298625
    [Google Scholar]
  43. HannaA. ShevdeL.A. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment.Mol. Cancer20161512410.1186/s12943‑016‑0509‑326988232
    [Google Scholar]
  44. LangerC.J. BesseB. GualbertoA. BrambillaE. SoriaJ.C. The evolving role of histology in the management of advanced non-small-cell lung cancer.J. Clin. Oncol.201028365311532010.1200/JCO.2010.28.812621079145
    [Google Scholar]
  45. EngelmanJ.A. ZejnullahuK. MitsudomiT. SongY. HylandC. ParkJ.O. LindemanN. GaleC.M. ZhaoX. ChristensenJ. KosakaT. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.Science2007316582710391043
    [Google Scholar]
  46. KatayamaR. ShawA.T. KhanT.M. Mino-KenudsonM. SolomonB.J. HalmosB. JessopN.A. WainJ.C. YeoA.T. BenesC. DrewL. SaehJ.C. CrosbyK. SequistL.V. IafrateA.J. EngelmanJ.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers.Sci. Transl. Med.20124120120ra1710.1126/scitranslmed.300331622277784
    [Google Scholar]
  47. KobayashiS. BoggonT.J. DayaramT. JänneP.A. KocherO. MeyersonM. JohnsonB.E. EckM.J. TenenD.G. HalmosB. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.2005352878679210.1056/NEJMoa04423815728811
    [Google Scholar]
  48. ParkK.S. MartelottoL.G. PeiferM. SosM.L. KarnezisA.N. MahjoubM.R. BernardK. ConklinJ.F. SzczepnyA. YuanJ. GuoR. OspinaB. FalzonJ. BennettS. BrownT.J. MarkovicA. DevereuxW.L. OcasioC.A. ChenJ.K. StearnsT. ThomasR.K. DorschM. BuonamiciS. WatkinsD.N. PeacockC.D. SageJ. A crucial requirement for Hedgehog signaling in small cell lung cancer.Nat. Med.201117111504150810.1038/nm.247321983857
    [Google Scholar]
  49. PanS. WuX. JiangJ. GaoW. WanY. ChengD. HanD. LiuJ. EnglundN.P. WangY. PeukertS. Miller-MoslinK. YuanJ. GuoR. MatsumotoM. VattayA. JiangY. TsaoJ. SunF. PferdekamperA.C. DoddS. TuntlandT. ManiaraW. KelleherJ.F.III YaoY. WarmuthM. WilliamsJ. DorschM. Discovery of NVP-LDE225, a potent and selective smoothened antagonist.ACS Med. Chem. Lett.20101313013410.1021/ml100030724900187
    [Google Scholar]
  50. Della CorteC.M. BellevicineC. VicidominiG. VitaglianoD. MalapelleU. AccardoM. FabozziA. FiorelliA. FasanoM. PapaccioF. MartinelliE. TroianiT. TronconeG. SantiniM. BiancoR. CiardielloF. MorgilloF. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer.Clin. Cancer Res.201521204686469710.1158/1078‑0432.CCR‑14‑331926124204
    [Google Scholar]
  51. RobargeK.D. BruntonS.A. CastanedoG.M. CuiY. DinaM.S. GoldsmithR. GouldS.E. GuichertO. GunznerJ.L. HalladayJ. JiaW. KhojastehC. KoehlerM.F.T. KotkowK. LaH. LaLondeR.L. LauK. LeeL. MarshallD. MarstersJ.C.Jr MurrayL.J. QianC. RubinL.L. SalphatiL. StanleyM.S. StibbardJ.H.A. SutherlinD.P. UbhayakerS. WangS. WongS. XieM. GDC-0449—A potent inhibitor of the hedgehog pathway.Bioorg. Med. Chem. Lett.200919195576558110.1016/j.bmcl.2009.08.04919716296
    [Google Scholar]
  52. HymanJ.M. FirestoneA.J. HeineV.M. ZhaoY. OcasioC.A. HanK. SunM. RackP.G. SinhaS. WuJ.J. Solow-CorderoD.E. JiangJ. RowitchD.H. ChenJ.K. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade.Proc. Natl. Acad. Sci. USA200910633141321413710.1073/pnas.090713410619666565
    [Google Scholar]
  53. LauthM. BergströmÅ. ShimokawaT. ToftgårdR. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists.Proc. Natl. Acad. Sci. USA2007104208455846010.1073/pnas.060969910417494766
    [Google Scholar]
  54. InfanteP. MoriM. AlfonsiR. GhirgaF. AielloF. ToscanoS. IngallinaC. SilerM. CucchiD. PoA. MieleE. D’AmicoD. CanettieriG. De SmaeleE. FerrettiE. ScrepantiI. Uccello BarrettaG. BottaM. BottaB. GulinoA. Di MarcotullioL. Gli1/DNA interaction is a druggable target for Hedgehog‐dependent tumors.EMBO J.201534220021710.15252/embj.20148921325476449
    [Google Scholar]
  55. ZhangL. LiL. JiaoM. WuD. WuK. LiX. ZhuG. YangL. WangX. HsiehJ.T. HeD. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog–Gli1 pathway.Cancer Lett.20123231485710.1016/j.canlet.2012.03.03722484470
    [Google Scholar]
  56. ChuE. SartorelliA.C. Cancer chemotherapy; StatPearl.Treasure IslandStatPearls Publishing2018948976
    [Google Scholar]
  57. MariniK.D. CroucherD.R. McCloyR.A. VaghjianiV. Gonzalez-RajalA. HastingsJ.F. ChinV. SzczepnyA. KostyrkoK. MarquezC. JayasekaraW.S.N. AlamgeerM. BoolellV. HanJ.Z.R. WaughT. LeeH.C. OakesS.R. KumarB. HarrisonC.A. HedgerM.P. LorensuhewaN. KitaB. BarrowR. RobinsonB.W. de KretserD.M. WuJ. GanjuV. Sweet-CorderoE.A. BurgessA. MartelottoL.G. RosselloF.J. CainJ.E. WatkinsD.N. Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy.Sci. Transl. Med.201810451eaat350410.1126/scitranslmed.aat350430045976
    [Google Scholar]
  58. Giroux-LeprieurE. CostantiniA. DingV.W. HeB. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance.Int. J. Mol. Sci.2018199283510.3390/ijms1909283530235830
    [Google Scholar]
  59. WangH. GaoZ. LiuX. AgarwalP. ZhaoS. ConroyD.W. JiG. YuJ. JaroniecC.P. LiuZ. LuX. LiX. HeX. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance.Nat. Commun.20189156210.1038/s41467‑018‑02915‑829422620
    [Google Scholar]
  60. ColliL.M. MachielaM.J. ZhangH. MyersT.A. JessopL. DelattreO. YuK. ChanockS.J. Landscape of combination immunotherapy and targeted therapy to improve cancer management.Cancer Res.201777133666367110.1158/0008‑5472.CAN‑16‑333828446466
    [Google Scholar]
  61. OkkenhaugK. Signaling by the phosphoinositide 3-kinase family in immune cells.Annu. Rev. Immunol.201331167570410.1146/annurev‑immunol‑032712‑09594623330955
    [Google Scholar]
  62. LiuP. ChengH. RobertsT.M. ZhaoJ.J. Targeting the phosphoinositide 3-kinase pathway in cancer.Nat. Rev. Drug Discov.20098862764410.1038/nrd292619644473
    [Google Scholar]
  63. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.02431380246
    [Google Scholar]
  64. VanhaesebroeckB. Guillermet-GuibertJ. GrauperaM. BilangesB. The emerging mechanisms of isoform-specific PI3K signalling.Nat. Rev. Mol. Cell Biol.201011532934110.1038/nrm288220379207
    [Google Scholar]
  65. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.02928802037
    [Google Scholar]
  66. FayardE. XueG. ParcellierA. BozulicL. HemmingsB.A. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway.Curr. Top. Microbiol. Immunol.20113463156
    [Google Scholar]
  67. NoorolyaiS. ShajariN. BaghbaniE. SadreddiniS. BaradaranB. The relation between PI3K/AKT signalling pathway and cancer.Gene201969812012810.1016/j.gene.2019.02.07630849534
    [Google Scholar]
  68. LiuX. XuY. ZhouQ. ChenM. ZhangY. LiangH. ZhaoJ. ZhongW. WangM. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment.Future Oncol.201814766567410.2217/fon‑2017‑058829219001
    [Google Scholar]
  69. MartiniM. De SantisM.C. BracciniL. GulluniF. HirschE. PI3K/AKT signaling pathway and cancer: an updated review.Ann. Med.201446637238310.3109/07853890.2014.91283624897931
    [Google Scholar]
  70. JaberN. ZongW.X. Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function.Ann. N. Y. Acad. Sci.201312801485110.1111/nyas.1202623551104
    [Google Scholar]
  71. GeeringB. CutillasP.R. NockG. GharbiS.I. VanhaesebroeckB. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers.Proc. Natl. Acad. Sci. USA2007104197809781410.1073/pnas.070037310417470792
    [Google Scholar]
  72. ZhaoL. VogtP.K. Class I PI3K in oncogenic cellular transformation.Oncogene200827415486549610.1038/onc.2008.24418794883
    [Google Scholar]
  73. FalascaM. MaffucciT. Regulation and cellular functions of class II phosphoinositide 3-kinases.Biochem. J.2012443358760110.1042/BJ2012000822507127
    [Google Scholar]
  74. FalascaM. HughesW.E. DominguezV. SalaG. FostiraF. FangM.Q. CazzolliR. ShepherdP.R. JamesD.E. MaffucciT. The role of phosphoinositide 3-kinase C2α in insulin signaling.J. Biol. Chem.200728238282262823610.1074/jbc.M70435720017644513
    [Google Scholar]
  75. PosorY. Eichhorn-GruenigM. PuchkovD. SchönebergJ. UllrichA. LampeA. MüllerR. ZarbakhshS. GulluniF. HirschE. KraussM. SchultzC. SchmoranzerJ. NoéF. HauckeV. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate.Nature2013499745723323710.1038/nature1236023823722
    [Google Scholar]
  76. AbeM. SetoguchiY. TanakaT. AwanoW. TakahashiK. UedaR. NakamuraA. GotoS. Membrane protein location-dependent regulation by PI3K (III) and rabenosyn-5 in Drosophila wing cells.PLoS One2009410e730610.1371/journal.pone.000730619798413
    [Google Scholar]
  77. VelascoA. BussagliaE. PallaresJ. DolcetX. LlobetD. EncinasM. LlechaN. PalaciosJ. PratJ. MatiasguiuX. PIK3CA gene mutations in endometrial carcinoma. Correlation with PTEN and K-RAS alterations.Hum. Pathol.200637111465147210.1016/j.humpath.2006.05.00716949921
    [Google Scholar]
  78. LeeJ.W. SoungY.H. KimS.Y. LeeH.W. ParkW.S. NamS.W. KimS.H. LeeJ.Y. YooN.J. LeeS.H. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.Oncogene20052481477148010.1038/sj.onc.120830415608678
    [Google Scholar]
  79. Pérez-TenorioG. AlkhoriL. OlssonB. WalterssonM.A. NordenskjöldB. RutqvistL.E. SkoogL. StålO. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer.Clin. Cancer Res.200713123577358410.1158/1078‑0432.CCR‑06‑160917575221
    [Google Scholar]
  80. BalakrishnanA. ChailletJ.R. Role of the inositol polyphosphate-4-phosphatase type II Inpp4b in the generation of ovarian teratomas.Dev. Biol.2013373111812910.1016/j.ydbio.2012.10.01123078915
    [Google Scholar]
  81. IhleN.T. WilliamsR. ChowS. ChewW. BerggrenM.I. Paine-MurrietaG. MinionD.J. HalterR.J. WipfP. AbrahamR. KirkpatrickL. PowisG. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling.Mol. Cancer Ther.20043776377210.1158/1535‑7163.763.3.715252137
    [Google Scholar]
  82. IhleN.T. Paine-MurrietaG. BerggrenM.I. BakerA. TateW.R. WipfP. AbrahamR.T. KirkpatrickD.L. PowisG. The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non–small cell lung cancer xenografts.Mol. Cancer Ther.2005491349135710.1158/1535‑7163.MCT‑05‑014916170026
    [Google Scholar]
  83. IhleN.T. LemosR.Jr WipfP. YacoubA. MitchellC. SiwakD. MillsG.B. DentP. KirkpatrickD.L. PowisG. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance.Cancer Res.200969114315010.1158/0008‑5472.CAN‑07‑665619117997
    [Google Scholar]
  84. RenH. ZhaoL. LiY. YueP. DengX. OwonikokoT.K. ChenM. KhuriF.R. SunS.Y. The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis.Cancer Lett.2013338222923810.1016/j.canlet.2013.03.03223562472
    [Google Scholar]
  85. RenH. ChenM. YueP. TaoH. OwonikokoT.K. RamalingamS.S. KhuriF.R. SunS.Y. The combination of RAD001 and NVP-BKM120 synergistically inhibits the growth of lung cancer in vitro and in vivo.Cancer Lett.2012325213914610.1016/j.canlet.2012.06.01822781393
    [Google Scholar]
  86. ZouZ.Q. ZhangL.N. WangF. BellengerJ. ShenY.Z. ZhangX.H. The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells.Mol. Med. Rep.20125250350822101421
    [Google Scholar]
  87. ShapiroG.I. RodonJ. BedellC. KwakE.L. BaselgaJ. BrañaI. PandyaS.S. ScheffoldC. LairdA.D. NguyenL.T. XuY. EgileC. EdelmanG. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors.Clin. Cancer Res.201420123324510.1158/1078‑0432.CCR‑13‑177724166903
    [Google Scholar]
  88. LiuN. RowleyB.R. BullC.O. SchneiderC. HaegebarthA. SchatzC.A. FracassoP.R. WilkieD.P. HentemannM. WilhelmS.M. ScottW.J. MumbergD. ZiegelbauerK. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models.Mol. Cancer Ther.201312112319233010.1158/1535‑7163.MCT‑12‑0993‑T24170767
    [Google Scholar]
  89. AkinleyeA. AvvaruP. FurqanM. SongY. LiuD. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics.J. Hematol. Oncol.2013618810.1186/1756‑8722‑6‑8824261963
    [Google Scholar]
  90. De SantisG. MiottiS. MazziM. CanevariS. TomassettiA. E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells.Oncogene20092891206121710.1038/onc.2008.47019151754
    [Google Scholar]
  91. GuoC. SahJ.F. BeardL. WillsonJ.K.V. MarkowitzS.D. GudaK. The noncoding RNA, miR‐126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3‐kinase signaling and is frequently lost in colon cancers.Genes Chromosomes Cancer2008471193994610.1002/gcc.2059618663744
    [Google Scholar]
  92. WuH. GoelV. HaluskaF.G. PTEN signaling pathways in melanoma.Oncogene200322203113312210.1038/sj.onc.120645112789288
    [Google Scholar]
  93. SmithJ.S. TachibanaI. PasseS.M. HuntleyB.K. BorellT.J. IturriaN. O’FallonJ.R. SchaeferP.L. ScheithauerB.W. JamesC.D. BucknerJ.C. JenkinsR.B. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme.J. Natl. Cancer Inst.200193161246125610.1093/jnci/93.16.124611504770
    [Google Scholar]
  94. AskhamJ.M. PlattF. ChambersP.A. SnowdenH. TaylorC.F. KnowlesM.A. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K.Oncogene201029115015510.1038/onc.2009.31519802009
    [Google Scholar]
  95. MengQ. XiaC. FangJ. RojanasakulY. JiangB.H. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway.Cell. Signal.200618122262227110.1016/j.cellsig.2006.05.01916839745
    [Google Scholar]
  96. CarptenJ.D. FaberA.L. HornC. DonohoG.P. BriggsS.L. RobbinsC.M. HostetterG. BoguslawskiS. MosesT.Y. SavageS. UhlikM. LinA. DuJ. QianY.W. ZecknerD.J. Tucker-KelloggG. TouchmanJ. PatelK. MoussesS. BittnerM. SchevitzR. LaiM.H.T. BlanchardK.L. ThomasJ.E. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer.Nature2007448715243944410.1038/nature0593317611497
    [Google Scholar]
  97. ParsonsD.W. WangT.L. SamuelsY. BardelliA. CumminsJ.M. DeLongL. SillimanN. PtakJ. SzaboS. WillsonJ.K.V. MarkowitzS. KinzlerK.W. VogelsteinB. LengauerC. VelculescuV.E. Mutations in a signalling pathway.Nature2005436705279210.1038/436792a16094359
    [Google Scholar]
  98. ArboledaM.J. LyonsJ.F. KabbinavarF.F. BrayM.R. SnowB.E. AyalaR. DaninoM. KarlanB.Y. SlamonD.J. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells.Cancer Res.200363119620612517798
    [Google Scholar]
  99. KongY. KumarS.M. XuX. Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells.Arch. Pathol. Lab. Med.2010134121740174910.5858/2009‑0418‑RAR.121128770
    [Google Scholar]
  100. CampbellI.G. RussellS.E. ChoongD.Y.H. MontgomeryK.G. CiavarellaM.L. HooiC.S.F. CristianoB.E. PearsonR.B. PhillipsW.A. Mutation of the PIK3CA gene in ovarian and breast cancer.Cancer Res.200464217678768110.1158/0008‑5472.CAN‑04‑293315520168
    [Google Scholar]
  101. BertelsenB.I. SteineS.J. SandveiR. MolvenA. LaerumO.D. Molecular analysis of the PI3K‐AKT pathway in uterine cervical neoplasia: Frequent PIK3CA amplification and AKT phosphorylation.Int. J. Cancer200611881877188310.1002/ijc.2146116287065
    [Google Scholar]
  102. OllikainenM. GyllingA. PuputtiM. NupponenN.N. Abdel-RahmanW.M. ButzowR. PeltomäkiP. Patterns of PIK3CA alterations in familial colorectal and endometrial carcinoma.Int. J. Cancer2007121491592010.1002/ijc.2276817471559
    [Google Scholar]
  103. WillnerJ. WurzK. AllisonK.H. GalicV. GarciaR.L. GoffB.A. SwisherE.M. Alternate molecular genetic pathways in ovarian carcinomas of common histological types.Hum. Pathol.200738460761310.1016/j.humpath.2006.10.00717258789
    [Google Scholar]
  104. PedreroJ.M.G. CarracedoD.G. PintoC.M. ZapateroA.H. RodrigoJ.P. NietoC.S. GonzalezM.V. Retracted: Frequent genetic and biochemical alterations of the PI 3‐K/AKT/PTEN pathway in head and neck squamous cell carcinoma.Int. J. Cancer2005114224224810.1002/ijc.2071115543611
    [Google Scholar]
  105. MizoguchiM. NuttC.L. MohapatraG. LouisD.N. Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas.Brain Pathol.200414437237710.1111/j.1750‑3639.2004.tb00080.x15605984
    [Google Scholar]
  106. PhilpA.J. CampbellI.G. LeetC. VincanE. RockmanS.P. WhiteheadR.H. ThomasR.J. PhillipsW.A. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors.Cancer Res.200161207426742911606375
    [Google Scholar]
  107. MieleL. Notch signaling.Clin. Cancer Res.20061241074107910.1158/1078‑0432.CCR‑05‑257016489059
    [Google Scholar]
  108. MieleL. MiaoH. NickoloffB. NOTCH signaling as a novel cancer therapeutic target.Curr. Cancer Drug Targets20066431332310.2174/15680090677744177116848722
    [Google Scholar]
  109. OkuyamaR. TagamiH. AibaS. Notch signaling: Its role in epidermal homeostasis and in the pathogenesis of skin diseases.J. Dermatol. Sci.200849318719410.1016/j.jdermsci.2007.05.01717624739
    [Google Scholar]
  110. QiR. AnH. YuY. ZhangM. LiuS. XuH. GuoZ. ChengT. CaoX. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis.Cancer Res.200363238323832914678992
    [Google Scholar]
  111. WangZ. LiY. SarkarF.H. Notch signaling proteins: legitimate targets for cancer therapy.Curr. Protein Pept. Sci.201011639840810.2174/13892031079182403920491628
    [Google Scholar]
  112. SparaneoA. FabrizioF.P. MuscarellaL.A. Nrf2 and notch signaling in lung cancer: near the crossroad.Oxid. Med. Cell. Longev.201620161731649210.1155/2016/731649227847554
    [Google Scholar]
  113. BolósV. Grego-BessaJ. de la PompaJ.L. Notch signaling in development and cancer.Endocr. Rev.200728333936310.1210/er.2006‑004617409286
    [Google Scholar]
  114. AsterJ.C. PearW.S. BlacklowS.C. Notch signaling in leukemia.Annu. Rev. Pathol.20083158761310.1146/annurev.pathmechdis.3.121806.15430018039126
    [Google Scholar]
  115. RizzoP. OsipoC. ForemanK. GoldeT. OsborneB. MieleL. Rational targeting of Notch signaling in cancer.Oncogene200827385124513110.1038/onc.2008.22618758481
    [Google Scholar]
  116. DonnemT. AndersenS. Al-ShibliK. Al-SaadS. BusundL.T. BremnesR.M. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer.Cancer2010116245676568510.1002/cncr.2555120737536
    [Google Scholar]
  117. TaichmanD.B. LoomesK.M. SchachtnerS.K. GuttentagS. VuC. WilliamsP. OakeyR.J. BaldwinH.S. Notch1 and Jagged1 expression by the developing pulmonary vasculature.Dev. Dyn.2002225216617510.1002/dvdy.1014612242716
    [Google Scholar]
  118. PearW.S. AsterJ.C. ScottM.L. HasserjianR.P. SofferB. SklarJ. BaltimoreD. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles.J. Exp. Med.199618352283229110.1084/jem.183.5.22838642337
    [Google Scholar]
  119. ZhengQ. QinH. ZhangH. LiJ. HouL. WangH. ZhangX. ZhangS. FengL. LiangY. HanH. YiD. Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549.Oncol. Rep.200717484785210.3892/or.17.4.84717342326
    [Google Scholar]
  120. SriuranpongV. BorgesM.W. RaviR.K. ArnoldD.R. NelkinB.D. BaylinS.B. BallD.W. Notch signaling induces cell cycle arrest in small cell lung cancer cells.Cancer Res.20016173200320511306509
    [Google Scholar]
  121. LiuY.P. YangC.J. HuangM.S. YehC.T. WuA.T.H. LeeY.C. LaiT.C. LeeC.H. HsiaoY.W. LuJ. ShenC.N. LuP.J. HsiaoM. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling.Cancer Res.201373140641610.1158/0008‑5472.CAN‑12‑173323135908
    [Google Scholar]
  122. KumarV. VashishtaM. KongL. WuX. LuJ.J. GuhaC. DwarakanathB.S. The role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies.Front. Cell Dev. Biol.2021965077210.3389/fcell.2021.65077233968932
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808353919241126110520
Loading
/content/journals/lddd/10.2174/0115701808353919241126110520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test