Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

The quinoline scaffold has gained attention for its potential applications in organic synthesis and the medical field.The objective has been to identify quinoline-based hybrids with a range of biological activities, including as anti-tuberculosis, anti-cancer, antimalarial, anti-inflammatory, anti-Alzheimer's, antibacterial, and antidiabetic properties. This review provides a critical overview and highlights the latest development of quinoline-based hybrids and their potential bioactivities.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808353391241106042408
2024-11-08
2025-09-27
Loading full text...

Full text loading...

References

  1. ElebijuO.F. AjaniO.O. OduseluG.O. OgunnupebiT.A. AdebiyiE. Recent advances in functionalized quinoline scaffolds and hybrids—Exceptional pharmacophore in therapeutic medicine.Front Chem.202310107433110.3389/fchem.2022.107433136688036
    [Google Scholar]
  2. ManR.J. JeelaniN. ZhouC. YangY.S. Recent progress in the development of quinoline derivatives for the exploitation of anti-cancer agents.Anticancer. Agents Med. Chem.202121782583810.2174/187152062066620051615034532416703
    [Google Scholar]
  3. Van de WalleT. CoolsL. MangelinckxS. D’hoogheM. Recent contributions of quinolines to antimalarial and anticancer drug discovery research.Eur. J. Med. Chem.202122611386510.1016/j.ejmech.2021.11386534655985
    [Google Scholar]
  4. HuaY. ZengK. LiangH. LiangH. JiangY. TuP. Anti-inflammatory quinoline-4(1H)-one derivatives from the aerial parts of Waltheria indica linn.Phytochemistry202321411374610.1016/j.phytochem.2023.113746
    [Google Scholar]
  5. GaoP. WangL. ZhaoL. ZhangQ. ZengK. ZhaoM. JiangY. TuP. GuoX. Anti-inflammatory quinoline alkaloids from the root bark of Dictamnus dasycarpus.Phytochemistry202017211226010.1016/j.phytochem.2020.11226031982646
    [Google Scholar]
  6. LiZ.H. YinL.Q. ZhaoD.H. JinL.H. SunY.J. TanC. SAR studies of quinoline and derivatives as potential treatments for alzheimer’s disease.Arab. J. Chem.202316210450210.1016/j.arabjc.2022.104502
    [Google Scholar]
  7. TahaM. SultanS. ImranS. RahimF. ZamanK. WadoodA. Ur RehmanA. UddinN. Mohammed KhanK. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies.Bioorg. Med. Chem.201927184081408810.1016/j.bmc.2019.07.03531378594
    [Google Scholar]
  8. NasehiP. OmidkhahN. GhodsiR. A review of recent advances in quinoline/isoquinoline based hybrids as microtubule targeted cancer therapeutics: Synthesis, binding mode, QSAR and docking studies.J. Mol. Struct.2024129513672010.1016/j.molstruc.2023.136720
    [Google Scholar]
  9. YadavP. ShahK. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry.Bioorg. Chem.202110910463910.1016/j.bioorg.2021.10463933618829
    [Google Scholar]
  10. PatelA. PatelS. MehtaM. PatelY. PatelR. ShahD. PatelD. ShahU. PatelM. PatelS. SolankiN. BambharoliyaT. PatelS. NaganiA. PatelH. VaghasiyaJ. ShahH. PrajapatiB. RathodM. BhimaniB. PatelR. BhavsarV. RakholiyaB. PatelM. PatelP. A review on synthetic investigation for quinoline- recent green approaches.Green Chem. Lett. Rev.202215233737210.1080/17518253.2022.2064194
    [Google Scholar]
  11. AutiP.S. GeorgeG. PaulA.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids.RSC Advances20201068413534139210.1039/D0RA06642G35516563
    [Google Scholar]
  12. FröhlichT. ReiterC. IbrahimM.M. BeutelJ. HuttererC. ZeitträgerI. BahsiH. LeidenbergerM. FriedrichO. KappesB. EfferthT. MarschallM. TsogoevaS.B. Synthesis of novel hybrids of quinazoline and artemisinin with high activities against Plasmodium falciparum, human cytomegalovirus, and leukemia cells.ACS Omega2017262422243110.1021/acsomega.7b0031030023664
    [Google Scholar]
  13. TyagiS. Salahuddin; Mazumder, A.; Kumar, R.; Datt, V.; Shabana, K.; Yar, M.S.; Ahsan, M.J. Synthesis and SAR of potential anti-cancer agents of quinoline analogues: A review.Med. Chem.202319878581210.2174/157340641966623022814061936852806
    [Google Scholar]
  14. MehtaM. PatelS. PatelA. PatelY. ShahD. RathodK. ShahU. PatelM. BambharoliyaT. Molecular docking, in silico admet study and synthesis of quinoline derivatives as dihydrofolate reductase (DHFR) inhibitors: A solvent-free one-pot green approach through sonochemistry.Lett. Drug Des. Discov.202421350451910.2174/1570180820666221107090046
    [Google Scholar]
  15. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 2018. Available from: https://www.iarc.who.int/featured-news/latest-global-cancer-datacancer- burden-rises-to-18-1-million-new-cases-and-9-6-millioncancer- deaths-in-2018/
  16. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  17. TaheriS. NazifiM. MansourianM. HosseinzadehL. ShokoohiniaY. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways.Bioorg. Chem.20199110314710.1016/j.bioorg.2019.10314731377390
    [Google Scholar]
  18. AbdelazizE. El-DeebN.M. ZayedM.F. HasaneinA.M. El SayedI.E.T. ElmongyE.I. KamounE.A. Synthesis and in-vitro anti-proliferative with antimicrobial activity of new coumarin containing heterocycles hybrids.Sci. Rep.20231312279110.1038/s41598‑023‑50170‑938123695
    [Google Scholar]
  19. DayalN. ŘezníčkováE. HernandezD.E. PeřinaM. Torregrosa-AllenS. ElzeyB.D. ŠkerlováJ. AjaniH. DjukicS. VojáčkováV. LepšíkM. ŘezáčováP. KryštofV. JordaR. SintimH.O. 3 H -Pyrazolo[4,3- f]quinoline-based kinase inhibitors inhibit the proliferation of acute myeloid leukemia cells in vivo.J. Med. Chem.20216415109811099610.1021/acs.jmedchem.1c0033034288692
    [Google Scholar]
  20. GüizaF.M. DuarteY.B. Mendez-SanchezS.C. BohórquezA.R.R. Synthesis and in vitro evaluation of substituted tetrahydroquinoline-isoxazole hybrids as anticancer agents.Med. Chem. Res.20192881182119610.1007/s00044‑019‑02363‑z
    [Google Scholar]
  21. ShahS.R. KatariyaK.D. ReddyD. Quinoline‐1,3‐Oxazole hybrids: Syntheses, anticancer activity and molecular docking studies.ChemistrySelect2020531097110210.1002/slct.201903763
    [Google Scholar]
  22. HamdyR. ElseginyS.A. ZiedanN.I. JonesA.T. WestwellA.D. New quinoline-based heterocycles as anticancer agents targeting Bcl-2.Molecules2019247127410.3390/molecules2407127430986908
    [Google Scholar]
  23. KalaP. Khasim SharifS. Murali KrishnaC. RamachandranD. Design, synthesis, and anticancer evaluation of 1,2,4-oxadiazole functionalized quinoline derivatives.Med. Chem. Res.202029113614410.1007/s00044‑019‑02467‑6
    [Google Scholar]
  24. ChaitanyaV.K. JalapathiP. ChandarM.R. VishnuT. VeerabhadraiahM. RaghavenderM. Novel hybrid molecules based on triazole-quinoline as potential anticancer agents: screening on MCF-7 cell line, docking studies, and pharmacokinetics evaluation.J. Indian Chem. Soc.2023204995100610.1007/s13738‑022‑02737‑y
    [Google Scholar]
  25. El-MiligyM.M.M. AbdelazizM.E. FahmyS.M. IbrahimT.M. Abu-SerieM.M. MahranM.A. HazzaaA.A. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities.J. Enzyme Inhib. Med. Chem.2023381215281010.1080/14756366.2022.215281036629075
    [Google Scholar]
  26. BangaruM. Kumar NukalaS. KannekantiP.K. SirassuN. ManchalR. Swamy ThirukovelaN. Synthesis of Quinoline‐Thiazolidine‐2,4‐dione coupled Pyrazoles as in vitro EGFR targeting anti‐breast cancer agents and their in silico studies.ChemistrySelect2023812e20220441410.1002/slct.202204414
    [Google Scholar]
  27. DiaconuD. AntociV. MangalagiuV. Amariucai-MantuD. MangalagiuI.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity.Sci. Rep.20221211698810.1038/s41598‑022‑21435‑636216981
    [Google Scholar]
  28. TiglaniD. Synthesis anticonvulsant and cytotoxic evaluation of benzimidazole-quinoline hybrids Schiff base analogs.Polycycl. Aromat. Compd.202344296098010.1080/10406638.2023.2183969
    [Google Scholar]
  29. Kadela-TomanekM. JastrzębskaM. ChrobakE. BębenekE. LatochaM. Hybrids of 1,4-Quinone with Quinoline derivatives: Synthesis, biological activity, and molecular docking with DT-Diaphorase (NQO1).Molecules20222719620610.3390/molecules2719620636234741
    [Google Scholar]
  30. FitchM.T. Van de BeekD. Drug insight: Steroids in CNS infectious diseases—new indications for an old therapy.Nat. Clin. Pract. Neurol.2008429710410.1038/ncpneuro071318256681
    [Google Scholar]
  31. HwangJ.L. WeissR.E. Steroid‐induced diabetes: A clinical and molecular approach to understanding and treatment.Diabetes Metab. Res. Rev.20143029610210.1002/dmrr.248624123849
    [Google Scholar]
  32. HartmannK. KoenenM. SchauerS. Wittig-BlaichS. AhmadM. BaschantU. TuckermannJ.P. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy.Physiol. Rev.201696240944710.1152/physrev.00011.201526842265
    [Google Scholar]
  33. IlovaiskyA.I. ScherbakovA.M. MerkulovaV.M. ChernoburovaE.I. ShchetininaM.A. AndreevaO.E. SalnikovaD.I. ZavarzinI.V. Terent’evA.O. Secosteroid–quinoline hybrids as new anticancer agents.J. Steroid Biochem. Mol. Biol.202322810624510.1016/j.jsbmb.2022.10624536608906
    [Google Scholar]
  34. KamraN. RaniS. KumarD. SinghA. SangwanP.L. SinghS.K. ThakralS. SinghV. Synthesis, biological evaluation and docking studies of quinoline Pyrazolyl‐Chalcone hybrids as anticancer and antimicrobial agents.ChemistrySelect2021642118221183110.1002/slct.202103375
    [Google Scholar]
  35. AbbasS.H. Abd El-HafeezA.A. ShomanM.E. MontanoM.M. HassanH.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity.Bioorg. Chem.20198236037710.1016/j.bioorg.2018.10.06430428415
    [Google Scholar]
  36. OthmanD.I.A. SelimK.B. El-SayedM.A.A. TantawyA.S. AmenY. ShimizuK. OkauchiT. KitamuraM. Design, synthesis and anticancer evaluation of new substituted Thiophene-Quinoline derivatives.Bioorg. Med. Chem.2019271911502610.1016/j.bmc.2019.07.04231416740
    [Google Scholar]
  37. AlegaonS.G. ParchureP. AraujoL.D. SalveP.S. AlagawadiK.R. JalalpureS.S. KumbarV.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines.Bioorg. Med. Chem. Lett.20172771566157110.1016/j.bmcl.2017.02.04328262527
    [Google Scholar]
  38. BinjawharD.N. Al-SalmiF.A. Abu AliO.A. AlghamdiM.A. FayadE. SaleemR.M. ZakiI. FaroukN.A. Design, synthesis and cytotoxic activity of molecular hybrids based on quinolin-8-yloxy and cinnamide hybrids and their apoptosis inducing property.RSC Advances20241416114431145110.1039/D4RA01911C38595714
    [Google Scholar]
  39. RoglicG. WHO global report on diabetes: A summary.Int. J. Noncommun. Dis.2016113810.4103/2468‑8827.184853
    [Google Scholar]
  40. ZimmetP.Z. MaglianoD.J. HermanW.H. ShawJ.E. Diabetes: A 21st century challenge.Lancet Diabetes Endocrinol.201421566410.1016/S2213‑8587(13)70112‑824622669
    [Google Scholar]
  41. InamdarS. KulkarniR.J.J.D. Drug related problems in elderly patients with type 2 diabetes mellitus.BMC Public Health201671110.1186/1471‑2458‑13‑1192
    [Google Scholar]
  42. EsmailiS. EbadiA. KhazaeiA. GhorbaniH. FaramarziM.A. MojtabaviS. MahdaviM. NajafiZ. Novel Pyrano[3,2- c]quinoline-1,2,3-triazole hybrids as potential anti-diabetic agents: in vitro α-Glucosidase inhibition, kinetic, and molecular dynamics simulation.ACS Omega2023826234122342410.1021/acsomega.3c0013337426262
    [Google Scholar]
  43. KhanY. IqbalS. ShahM. MaalikA. HussainR. KhanS. KhanI. PashameahR.A. AlzahraniE. FaroukA.E. AlahmdiM.I. Abd-RabbohH.S.M. New quinoline-based triazole hybrid analogs as effective inhibitors of α-amylase and α-glucosidase: Preparation, in vitro evaluation, and molecular docking along with in silico studies.Front Chem.20221099582010.3389/fchem.2022.99582036186602
    [Google Scholar]
  44. AvulaS.K. UllahS. HalimS.A. KhanA. AnwarM.U. CsukR. Al-HarrasiA. Synthesis of novel substituted quinoline derivatives as diabetics II inhibitors and along with their in-silico studies.J. Mol. Struct.2023127413456010.1016/j.molstruc.2022.134560
    [Google Scholar]
  45. Abdel-BakyY.M. OmerA.M. El-FakharanyE.M. AmmarY.A. AbusaifM.S. RagabA. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: Design and molecular modeling simulation.Sci. Rep.20231312279210.1038/s41598‑023‑50130‑338123716
    [Google Scholar]
  46. GanesanM.S. RajaK.K. MurugesanS. KumarB.K. RajagopalG. ThirunavukkarasuS. Synthesis, biological evaluation, molecular docking, molecular dynamics and DFT studies of quinoline-fluoroproline amide hybrids.J. Mol. Struct.2020121712836010.1016/j.molstruc.2020.128360
    [Google Scholar]
  47. NooriM. RastakM. HalimiM. GhomiM.K. MollazadehM. Mohammadi-KhanaposhtaniM. SayahiM.H. RezaeiZ. MojtabaviS. Ali FaramarziM. LarijaniB. BiglarM. AmanlouM. MahdaviM. Design, synthesis, in vitro, and in silico enzymatic evaluations of thieno[2,3-b]quinoline-hydrazones as novel inhibitors for α-glucosidase.Bioorg. Chem.202212710599610.1016/j.bioorg.2022.10599635878449
    [Google Scholar]
  48. TseE.G. KorsikM. ToddM.H. The past, present and future of anti-malarial medicines.Malar. J.20191819310.1186/s12936‑019‑2724‑z30902052
    [Google Scholar]
  49. KumarA. JainS. ChauhanS. AggarwalS. SainiD. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction.Chem. Biol. Interact.202337311037910.1016/j.cbi.2023.11037936738914
    [Google Scholar]
  50. VinindwaB. DziwornuG.A. MasambaW. Synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents.Molecules20212613409310.3390/molecules2613409334279438
    [Google Scholar]
  51. CharrisJ.E. MonasteriosM.C. AcostaM.E. RodríguezM.A. GamboaN.D. MartínezG.P. RojasH.R. MijaresM.R. De SanctisJ.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action.Med. Chem. Res.201928112050206610.1007/s00044‑019‑02435‑0
    [Google Scholar]
  52. FengY.Y. DongC.E. LiR. ZhangX.Q. WangW. ZhangX.R. LiuW.W. ShiD.H. Design, synthesis and biological evaluation of quinoline-1,2,4-triazine hybrids as antimalarial agents.J. Mol. Struct.2023127113398210.1016/j.molstruc.2022.133982
    [Google Scholar]
  53. ReddyP.L. KhanS.I. PonnanP. TripathiM. RawatD.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents.Eur. J. Med. Chem.201712667568610.1016/j.ejmech.2016.11.05727936446
    [Google Scholar]
  54. AdigunR.A. MalanF.P. BalogunM.O. OctoberN. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids.Struct. Chem.20233462065208210.1007/s11224‑023‑02142‑y
    [Google Scholar]
  55. PinheiroL.C.S. BoechatN. FerreiraM.L.G. JúniorC.C.S. JesusA.M.L. LeiteM.M.M. SouzaN.B. KrettliA.U. Anti- Plasmodium falciparum activity of quinoline–sulfonamide hybrids.Bioorg. Med. Chem.201523175979598410.1016/j.bmc.2015.06.05626190461
    [Google Scholar]
  56. K.Singh H.Kuar P.Smith C.de Kock K.Chibale J.Balzarini Quinoline-pyrimidine hybrids: Synthesis, antiplasmodial activity, SAR, and mode of action studies.J. Med. Chem.2014573544810.1021/jm4014778
    [Google Scholar]
  57. ShahR.B. ValandN.N. SutariyaP.G. MenonS.K. Design, synthesis and characterization of quinoline–pyrimidine linked calix[4]arene scaffolds as anti-malarial agents.J. Incl. Phenom. Macrocycl. Chem.2016841-217317810.1007/s10847‑015‑0581‑0
    [Google Scholar]
  58. KayambaF. MalimabeT. AdemolaI.K. PooeO.J. KushwahaN.D. MahlalelaM. van ZylR.L. GordonM. MudauP.T. ZiningaT. ShonhaiA. NyamoriV.O. KarpoormathR. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors.Eur. J. Med. Chem.202121711333010.1016/j.ejmech.2021.11333033744688
    [Google Scholar]
  59. MauryaS.S. BahugunaA. KhanS.I. KumarD. KholiyaR. RawatD.S. N-Substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies.Eur. J. Med. Chem.201916227728910.1016/j.ejmech.2018.11.02130448417
    [Google Scholar]
  60. DadgostarP. Antimicrobial resistance: Implications and costs.Infect. Drug Resist.2019123903391010.2147/IDR.S234610
    [Google Scholar]
  61. PatelD.B. DarjiD.G. PatelK.R. RajaniD.P. RajaniS.D. PatelH.D. Synthesis of novel quinoline‐thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME‐Tox properties.J. Heterocycl. Chem.20205731183120010.1002/jhet.3855
    [Google Scholar]
  62. EissaS.I. FarragA.M. AbbasS.Y. El ShehryM.F. RagabA. FayedE.A. AmmarY.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies.Bioorg. Chem.202111010480310.1016/j.bioorg.2021.10480333761314
    [Google Scholar]
  63. AmmarY.A. El-HafezS.M.A.A. HesseinS.A. AliA.M. AskarA.A. RagabA. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study.J. Mol. Struct.2021124213074810.1016/j.molstruc.2021.130748
    [Google Scholar]
  64. MohamedA.H. MostafaS.M. AlyA.A. HassanA.A. OsmanE.M. NaylA.A. BrownA.B. AbdelhafezE.M.N. Novel quinoline/thiazinan-4-one hybrids; design, synthesis, and molecular docking studies as potential anti-bacterial candidates against MRSA.RSC Advances20231321146311464010.1039/D3RA01721D
    [Google Scholar]
  65. EzelarabH.A.A. HassanH.A. Abuo-RahmaG.E.D.A. AbbasS.H. Design, synthesis, and biological investigation of quinoline/ciprofloxacin hybrids as antimicrobial and anti-proliferative agents.J. Indian Chem. Soc.202320368370010.1007/s13738‑022‑02704‑7
    [Google Scholar]
  66. DiaconuD. MangalagiuV. Amariucai-MantuD. AntociV. GiuroiuC.L. MangalagiuI.I. Hybrid Quinoline-Sulfonamide complexes (M2+) derivatives with antimicrobial activity.Molecules20202512294610.3390/molecules2512294632604828
    [Google Scholar]
  67. InsuastyD. VidalO. BernalA. MarquezE. GuzmanJ. InsuastyB. QuirogaJ. SvetazL. ZacchinoS. PuertoG. AboniaR. Antimicrobial activity of Quinoline-based Hydroxyimidazolium hybrids.Antibiotics20198423910.3390/antibiotics804023931795101
    [Google Scholar]
  68. AmmarY.A. MickyJ.A. Aboul-MagdD.S. Abd El-HafezS.M.A. HesseinS.A. AliA.M. RagabA. Development and radiosterilization of new hydrazono‐quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study.Chem. Biol. Drug Des.2023101224527010.1111/cbdd.1415436305722
    [Google Scholar]
  69. RizkO.H. BekhitM.G. HazzaaA.A.B. El-KhawassE.S.M. AbdelwahabI.A. Synthesis, antibacterial evaluation, and DNA gyrase inhibition profile of some new quinoline hybrids.Arch. Pharm. (Weinheim)201935210190008610.1002/ardp.20190008631389630
    [Google Scholar]
  70. TatulianS.A. Challenges and hopes for alzheimer’s disease.Drug Discov. Today20222741027104310.1016/j.drudis.2022.01.01635121174
    [Google Scholar]
  71. SinghY.P. KumarN. ChauhanB.S. GargP. Carbamate as a potential anti‐alzheimer’s pharmacophore: A review.Drug Dev. Res.20238481624165110.1002/ddr.2211337694498
    [Google Scholar]
  72. SinghY.P. KumarH. Tryptamine: A privileged scaffold for the management of alzheimer’s disease.Drug Dev. Res.20238481578159410.1002/ddr.2211137675624
    [Google Scholar]
  73. MunirR. ZaibS. Zia-ur-Rehman, M.; Hussain, N.; Chaudhry, F.; Younas, M.T.; Zahra, F.T.; Tajammul, Z.; Javid, N.; Dera, A.A.; Ogaly, H.A.; Khan, I. Ultrasound-assisted synthesis of Piperidinyl-Quinoline Acylhydrazones as new anti-alzheimer’s Agents: Assessment of cholinesterase inhibitory profile, molecular docking analysis, and drug-like properties.Molecules2023285213110.3390/molecules2805213136903376
    [Google Scholar]
  74. NepovimovaE. UliassiE. KorabecnyJ. Peña-AltamiraL.E. SamezS. PesaresiA. GarciaG.E. BartoliniM. AndrisanoV. BergaminiC. FatoR. LambaD. RobertiM. KucaK. MontiB. BolognesiM.L. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects.J. Med. Chem.201457208576858910.1021/jm501080425259726
    [Google Scholar]
  75. UliassiE. BergaminiC. RizzardiN. NaldiM. CoresÁ. BartoliniM. Carlos MenéndezJ. BolognesiM.L. Quinolinetrione-tacrine hybrids as multi-target-directed ligands against alzheimer’s disease.Bioorg. Med. Chem.20239111741910.1016/j.bmc.2023.11741937487339
    [Google Scholar]
  76. ZaibS. MunirR. YounasM.T. KausarN. IbrarA. AqsaS. ShahidN. AsifT.T. AlsaabH.O. KhanI. Hybrid Quinoline-Thiosemicarbazone therapeutics as a new treatment opportunity for alzheimer’s disease‒synthesis, in vitro cholinesterase inhibitory potential and computational modeling analysis.Molecules20212621657310.3390/molecules2621657334770983
    [Google Scholar]
  77. De OliveiraC. Brum, J.; Neto, D.C.F.; de Almeida, J.S.F.D.; Lima, J.A.; Kuca, K.; França, T.C.C.; Figueroa-Villar, J.D. Synthesis of new Quinoline-Piperonal hybrids as potential drugs against alzheimer’s disease.Int. J. Mol. Sci.20192016394410.3390/ijms2016394431416113
    [Google Scholar]
  78. GeY.X. ChengZ.Q. ZhouL. XieH.X. WangY.Y. ZhuK. JiaoY. LiuG. JiangC.S. Synthesis and biological evaluation of quinoline/cinnamic acid hybrids as amyloid-beta aggregation inhibitors.Monatsh. Chem.2020151584585210.1007/s00706‑020‑02609‑2
    [Google Scholar]
  79. ChenH. MiJ. LiS. LiuZ. YangJ. ChenR. WangY. BanY. ZhouY. DongW. SangZ. Design, synthesis and evaluation of quinoline-O-carbamate derivatives as multifunctional agents for the treatment of alzheimer’s disease.J. Enzyme Inhib. Med. Chem.2023381216968210.1080/14756366.2023.216968236688444
    [Google Scholar]
  80. NajafiZ. SaeediM. MahdaviM. SabourianR. KhanaviM. TehraniM.B. MoghadamF.H. EdrakiN. Karimpor-RazkenariE. SharifzadehM. ForoumadiA. ShafieeA. AkbarzadehT. Design and synthesis of novel anti-alzheimer’s agents: Acridine-chromenone and quinoline-chromenone hybrids.Bioorg. Chem.201667849410.1016/j.bioorg.2016.06.00127289559
    [Google Scholar]
  81. WangW. PanT. SuR. ChenM. XiongW. XuC. HuangL. Discovery of novel melatonin–mydroxyquinoline hybrids as multitarget strategies for alzheimer’s disease therapy.Front Chem.202412137493010.3389/fchem.2024.1374930
    [Google Scholar]
  82. SinghG. KumarS. PandaS.R. KumarP. RaiS. VermaH. SinghY.P. KumarS. SrikrishnaS. NaiduV.G.M. ModiG. Design, synthesis, and biological evaluation of ferulic acid-piperazine derivatives targeting pathological hallmarks of alzheimer’s disease.ACS Chem. Neurosci.202415152756277810.1021/acschemneuro.4c0013039076038
    [Google Scholar]
  83. DvorakovaM. LandaP. Anti-inflammatory activity of natural stilbenoids: A review.Pharmacol. Res.201712412614510.1016/j.phrs.2017.08.00228803136
    [Google Scholar]
  84. ShaikhS.F. DhavanP.P. SinghP.R. VaidyaS.P. JadhavB.L. RamanaM.M.V. Synthesis of novel quinoline–benzoxazolinone ester hybrids: In vitro anti-inflammatory activity and antibacterial activity.Russ. J. Bioorganic Chem.202147257258310.1134/S1068162021020242
    [Google Scholar]
  85. GhanimA.M. GirgisA.S. KariukiB.M. SamirN. SaidM.F. AbdelnaserA. NasrS. BekheitM.S. AbdelhameedM.F. AlmalkiA.J. IbrahimT.S. PandaS.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates.Bioorg. Chem.202211910555710.1016/j.bioorg.2021.10555734952242
    [Google Scholar]
  86. GhanimA.M. RezqS. IbrahimT.S. RomeroD.G. KothayerH. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition.Eur. J. Med. Chem.202121911345710.1016/j.ejmech.2021.11345733892270
    [Google Scholar]
  87. MohassabA.M. HassanH.A. AbdelhamidD. GoudaA.M. GomaaH.A.M. YoussifB.G.M. RadwanM.O. FujitaM. OtsukaM. Abdel-AzizM. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study.J. Mol. Struct.2021124413094810.1016/j.molstruc.2021.130948
    [Google Scholar]
  88. SiddiqueS. HussainK. ShehzadiN. ArshadM. ArshadM.N. IftikharS. SaghirF. ShaukatA. SarfrazM. AhmedN. Design, synthesis, biological evaluation and molecular docking studies of quinoline-anthranilic acid hybrids as potent anti-inflammatory drugs.Org. Biomol. Chem.202422183708372410.1039/D4OB00040D38639206
    [Google Scholar]
  89. PerišA. Effects of quinoline-arylamidine hybrids on LPS-induced inflammation in RAW 264.7 cells.Period. Biol.2020121-1223-416116710.18054/pb.v121‑122i3‑4.11132
    [Google Scholar]
  90. Global tuberculosis report.2021Available from: https://www.who.int/publications/i/item/9789240037021
  91. DhedaK. GumboT. MaartensG. DooleyK.E. McNerneyR. MurrayM. FurinJ. NardellE.A. LondonL. LessemE. TheronG. van HeldenP. NiemannS. MerkerM. DowdyD. Van RieA. SiuG.K.H. PasipanodyaJ.G. RodriguesC. ClarkT.G. SirgelF.A. EsmailA. LinH.H. AtreS.R. SchaafH.S. ChangK.C. LangeC. NahidP. UdwadiaZ.F. HorsburghC.R.Jr ChurchyardG.J. MenziesD. HesselingA.C. NuermbergerE. McIlleronH. FennellyK.P. GoemaereE. JaramilloE. LowM. JaraC.M. PadayatchiN. WarrenR.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis.Lancet Respir. Med.20175429136010.1016/S2213‑2600(17)30079‑628344011
    [Google Scholar]
  92. AherR.B. SarkarD. Pharmacophore modeling of pretomanid (PA-824) derivatives for antitubercular potency against replicating and non-replicating Mycobacterium tuberculosis.J. Biomol. Struct. Dyn.202139388990010.1080/07391102.2020.171920531983295
    [Google Scholar]
  93. GnanaveluK. K S, V.K.; Eswaran, S.; Sivashanmugam, K. Novel quinoline-piperazine hybrids: The design, synthesis and evaluation of antibacterial and antituberculosis properties.RSC Med. Chem.202214118318910.1039/D2MD00260D36760744
    [Google Scholar]
  94. AlcarazM. SharmaB. Roquet-BanèresF. CondeC. CochardT. BietF. KumarV. KremerL. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis.Eur. J. Med. Chem.202223911453110.1016/j.ejmech.2022.11453135759907
    [Google Scholar]
  95. JainP.P. DeganiM.S. RajuA. AnantramA. SeerviM. SathayeS. RayM. RajanM.G.R. Identification of a novel class of quinoline–oxadiazole hybrids as anti-tuberculosis agents.Bioorg. Med. Chem. Lett.201626264564910.1016/j.bmcl.2015.11.05726675440
    [Google Scholar]
  96. MoodleyR. MashabaC. RakodiG. NcubeN. MaphoruM. BalogunM. JordanA. WarnerD. KhanR. TukululaM. New Quinoline–Urea–Benzothiazole hybrids as promising antitubercular agents: Synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling.Pharmaceuticals202215557610.3390/ph1505057635631402
    [Google Scholar]
  97. AbdelrahmanM.A. AlmahliH. Al-WarhiT. MajrashiT.A. Abdel-AzizM.M. EldehnaW.M. SaidM.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi and extensively drug-resistant Mycobacterium tuberculosis.Molecules20222724880710.3390/molecules2724880736557937
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808353391241106042408
Loading
/content/journals/lddd/10.2174/0115701808353391241106042408
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's; bacteria; cancer; coumarin; hybrid; inflammation; malarial; oxadiazole; oxazole; Quinoline
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test