Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Hepatocellular carcinoma is the cancer with the highest mortality rate worldwide. Currently, existing treatments are not very effective for this disease. Different science areas have focused on developing new therapies, including nanomedicine. studies have reported the anticancer activity of silver nanoparticles, particularly those coated with polyvinylpyrrolidone (AgNPs-PVP).

Aims

Characterize the effect of AgNPs on the HepG2 by bioinformatics analysis.

Methods

From a list of proteins, we performed analysis to predict protein-protein interaction, hub gene, gene ontology, KEGG pathways, hub gene expression, protein expression, survival, cell infiltration immune, and molecular docking of AgNPs-PVP to target proteins. Cytoscape and UCSF Chimera software, DAVID, UALCAN, TISIDB, and HDOCK databases were included in the predictive analysis.

Results

Gene ontology and KEGG pathways showed that AgNP exposure causes cellular organelles dysregulation and deregulation of protein production mechanisms.

Additionally, metabolic pathways were altered, including glycolysis, gluconeogenesis, and amino acid biosynthesis. Hub genes , , , , and showed differential expression for gene expression, protein, and survival analysis. Furthermore, and were positively correlated with CD8+ T cell infiltration, and RPLP0, EEF1B2, and were negatively correlated with NK cell infiltration. Finally, molecular docking showed that AgNPs-PVP interacts highly with the target proteins.

Conclusion

AgNPs cause alterations in cell viability. Furthermore, the deregulation of hub genes and the modulation of the immune system are associated with anticancer effects, and molecular docking demonstrated high interaction with the target proteins that should be studied experimentally.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808352454241115065851
2024-11-22
2025-09-27
Loading full text...

Full text loading...

References

  1. JanevskaD. Chaloska-IvanovaV. JanevskiV. Hepatocellular carcinoma: Risk factors, diagnosis and treatment.Open Access Maced. J. Med. Sci.20153473273610.3889/oamjms.2015.11127275318
    [Google Scholar]
  2. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  3. ZhangX. GuanL. TianH. ZengZ. ChenJ. HuangD. SunJ. GuoJ. CuiH. LiY. Risk factors and prevention of viral hepatitis-related hepatocellular carcinoma.Front. Oncol.20211168696210.3389/fonc.2021.68696234568017
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  5. Tejeda-MaldonadoJ. García-JuárezI. Aguirre-ValadezJ. González-AguirreA. Vilatobá-ChapaM. Armengol-AlonsoA. Escobar-PenagosF. TorreA. Sánchez-ÁvilaJ.F. Carrillo-PérezD.L. Diagnosis and treatment of hepatocellular carcinoma: An update.World J. Hepatol.20157336237610.4254/wjh.v7.i3.36225848464
    [Google Scholar]
  6. DaherS. MassarwaM. BensonA.A. KhouryT. Current and future treatment of hepatocellular carcinoma: An updated comprehensive review.J. Clin. Transl. Hepatol.20186111010.14218/JCTH.2017.0003129607307
    [Google Scholar]
  7. RazaA. SoodG.K. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine.World J. Gastroenterol.201420154115412710.3748/wjg.v20.i15.411524764650
    [Google Scholar]
  8. AhmadianE. DizajS.M. RahimpourE. HasanzadehA. EftekhariA. Hosain zadegan, H.; Halajzadeh, J.; Ahmadian, H. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line.Mater. Sci. Eng. C20189346547110.1016/j.msec.2018.08.02730274079
    [Google Scholar]
  9. ShyamalagowriS. CharlesP. ManjunathanJ. KamarajM. AnithaR. PugazhendhiA. In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines.Process Biochem.2022116172510.1016/j.procbio.2022.02.022
    [Google Scholar]
  10. Al-KhedhairyA.A. WahabR. Silver nanoparticles: An instantaneous solution for anticancer activity against human liver (HepG2) and breast (MCF-7) cancer cells.Metals (Basel)202212114810.3390/met12010148
    [Google Scholar]
  11. BlancoJ. LafuenteD. GómezM. GarcíaT. DomingoJ.L. SánchezD.J. Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: Time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects.Arch. Toxicol.201791265166610.1007/s00204‑016‑1773‑027387714
    [Google Scholar]
  12. MoorsE. SharmaV. TianF. JavedB. Surface-modified silver nanoparticles and their encapsulation in liposomes can treat MCF-7 breast cancer cells.J. Funct. Biomater.2023141050910.3390/jfb1410050937888174
    [Google Scholar]
  13. HuangD. W. ShermanB. T. TanQ. KirJ. LiuD. BryantD. GuoY. StephensR. BaselerM. W. LaneH. C. David bioin formatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists.Nucleic Acids Res.200735Web Server issueW169W17510.1093/nar/gkm415
    [Google Scholar]
  14. OtasekD. MorrisJ.H. BouçasJ. PicoA.R. DemchakB. Cytoscape automation: Empowering workflow-based network analysis.Genome Biol.201920118510.1186/s13059‑019‑1758‑431477170
    [Google Scholar]
  15. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  16. CaoL. ChenY. ZhangM. XuD. LiuY. LiuT. LiuS. WangP. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis.PeerJ20186e518010.7717/peerj.518030002985
    [Google Scholar]
  17. GollapalliP. KumariN.S. ShettyP. GnanasekaranT.S. Molecular basis of AR and STK11 genes associated pathogenesis via AMPK pathway and adipocytokine signalling pathway in the development of metabolic disorders in PCOS women.Beni. Suef Univ. J. Basic Appl. Sci.20221112310.1186/s43088‑022‑00200‑8
    [Google Scholar]
  18. SelvanG.T. GollapalliP. ShettyP. KumariN.S. Exploring key molecular signatures of immune responses and pathways associated with tuberculosis in comorbid diabetes mellitus: A systems biology approach.Beni. Suef Univ. J. Basic Appl. Sci.20221117710.1186/s43088‑022‑00257‑5
    [Google Scholar]
  19. SelvanT.G. GollapalliP. KumarS.H.S. GhateS.D. Early diagnostic and prognostic biomarkers for gastric cancer: Systems-level molecular basis of subsequent alterations in gastric mucosa from chronic atrophic gastritis to gastric cancer.J. Genet. Eng. Biotechnol.20232118610.1186/s43141‑023‑00539‑037594635
    [Google Scholar]
  20. SekaranT.S.G. KedilayaV.R. KumariS.N. ShettyP. GollapalliP. Exploring the differentially expressed genes in human lymphocytes upon response to ionizing radiation: A network biology approach.Radiat. Oncol. J.2021391486010.3857/roj.2021.0004533794574
    [Google Scholar]
  21. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. CreightonC.J. Ponce-RodriguezI. ChakravarthiB.V.S.K. VaramballyS. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.00228732212
    [Google Scholar]
  22. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor–immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz21030903160
    [Google Scholar]
  23. KyrychenkoA. KorsunO.M. GubinI.I. KovalenkoS.M. KaluginO.N. Atomistic simulations of coating of silver nanoparticles with Poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length.J. Phys. Chem. C2015119147888789910.1021/jp510369a
    [Google Scholar]
  24. VaradiM. AnyangoS. DeshpandeM. NairS. NatassiaC. YordanovaG. YuanD. StroeO. WoodG. LaydonA. ŽídekA. GreenT. TunyasuvunakoolK. PetersenS. JumperJ. ClancyE. GreenR. VoraA. LutfiM. FigurnovM. CowieA. HobbsN. KohliP. KleywegtG. BirneyE. HassabisD. VelankarS. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab106134791371
    [Google Scholar]
  25. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein–protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x32269383
    [Google Scholar]
  26. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  27. FernándezM.N. Muñoz-OlivasR. Luque-GarciaJ.L. SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity.Nanotoxicology201913681282610.1080/17435390.2019.157937430776931
    [Google Scholar]
  28. Montalvo-QuirosS. Aragoneses-CazorlaG. Garcia-AlcaldeL. Vallet-RegíM. GonzálezB. Luque-GarciaJ.L. Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: Insights into the action mechanisms using quantitative proteomics.Nanoscale201911104531454510.1039/C8NR07667G30806414
    [Google Scholar]
  29. MirandaR.R. GorshkovV. KorzeniowskaB. KempfS.J. NetoF.F. KjeldsenF. Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells.Nanotoxicology201812778179510.1080/17435390.2018.148998729996704
    [Google Scholar]
  30. XuM. YangQ. XuL. RaoZ. CaoD. GaoM. LiuS. Protein target identification and toxicological mechanism investigation of silver nanoparticles-induced hepatotoxicity by integrating proteomic and metallomic strategies.Part. Fibre Toxicol.20191614610.1186/s12989‑019‑0322‑431775802
    [Google Scholar]
  31. Cruz-RamírezO.U. Valenzuela-SalasL.M. Blanco-SalazarA. Rodríguez-ArenasJ.A. Mier-MaldonadoP.A. García-RamosJ.C. BogdanchikovaN. PestryakovA. Toledano-MagañaY. Antitumor activity against human colorectal adenocarcinoma of silver nanoparticles: Influence of [Ag]/[PVP] ratio.Pharmaceutics2021137100010.3390/pharmaceutics1307100034371692
    [Google Scholar]
  32. HolmilaR. WuH. LeeJ. TsangA.W. SinghR. FurduiC.M. Integrated redox proteomic analysis highlights new mechanisms of sensitivity to silver nanoparticles.Mol. Cell. Proteomics20212010007310.1016/j.mcpro.2021.10007333757833
    [Google Scholar]
  33. ParkS. LeeM.J. LeeS.J. YunS.J. JangJ-Y. KangH. KimK. ChoiI-H. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species.Int. J. Nanomedicine201511556810.2147/IJN.S9490726730190
    [Google Scholar]
  34. XiaoH. ChenY. AlnaggarM. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure.Micron201912610275010.1016/j.micron.2019.10275031522088
    [Google Scholar]
  35. Anti-proliferative activity of silver nanoparticles.BMC Cell Biol.20091016510.1186/1471‑2121‑10‑6519761582
    [Google Scholar]
  36. Tardillo SuárezV. KarepinaE. ChevalletM. GalletB. Cottet-RousselleC. CharbonnierP. MoriscotC. Michaud-SoretI. BalW. FuchsA. TucoulouR. JouneauP-H. VeronesiG. DeniaudA. Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles.Environ. Sci. Nano2020751373138710.1039/C9EN01348B
    [Google Scholar]
  37. Martínez-EsquiviasF. Gutiérrez-AnguloM. Becerra-RuizJ.S. Martinez-PerezL.A. de la Cruz-AhumadaC.J. Guzmán-FloresJ.M. Bioinformatic analysis of the effect of silver nanoparticles on colorectal cancer cell line.BioMed Res. Int.2022202211010.1155/2022/682883735445138
    [Google Scholar]
  38. ZhuX. RenJ. XuD. ChengD. WangW. RenJ. XiaoZ. JiangH. DingY. TanY. Upregulation of translationally controlled tumor protein is associated with cervical cancer progression.Front. Mol. Biosci.2021868671810.3389/fmolb.2021.68671834589516
    [Google Scholar]
  39. Vadivel GnanasundramS. FåhraeusR. Translation stress regulates ribosome synthesis and cell proliferation.Int. J. Mol. Sci.20181912375710.3390/ijms1912375730486342
    [Google Scholar]
  40. KostiI. JainN. AranD. ButteA.J. SirotaM. Cross-tissue analysis of gene and protein expression in normal and cancer tissues.Sci. Rep.2016612479910.1038/srep2479927142790
    [Google Scholar]
  41. El KhouryW. NasrZ. Deregulation of ribosomal proteins in human cancers.Biosci. Rep.20214112BSR2021157710.1042/BSR2021157734873618
    [Google Scholar]
  42. RezaA.M.M.T. YuanY.G. microRNAs mediated regulation of the ribosomal proteins and its consequences on the global translation of proteins.Cells202110111010.3390/cells1001011033435549
    [Google Scholar]
  43. PecoraroA. PaganoM. RussoG. RussoA. Ribosome biogenesis and cancer: Overview on ribosomal proteins.Int. J. Mol. Sci.20212211549610.3390/ijms2211549634071057
    [Google Scholar]
  44. KangJ. BrajanovskiN. ChanK.T. XuanJ. PearsonR.B. SanijE. Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy.Signal Transduct. Target. Ther.20216132310.1038/s41392‑021‑00728‑834462428
    [Google Scholar]
  45. MuhammadQ. JangY. KangS.H. MoonJ. KimW.J. ParkH. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity.Biomater. Sci.2020861490150110.1039/C9BM01643K31994542
    [Google Scholar]
  46. HassanM.K. KumarD. NaikM. DixitM. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers.PLoS One2018131e019137710.1371/journal.pone.019137729342219
    [Google Scholar]
  47. SajidM. LiuL. SunC. The dynamic role of NK cells in liver cancers: Role in HCC and HBV associated HCC and its therapeutic implications.Front. Immunol.20221388718610.3389/fimmu.2022.88718635669776
    [Google Scholar]
  48. Martínez-EsquiviasF. Guzmán-FloresJ.M. Chávez-DíazI.F. Iñiguez-MuñozL.E. Reyes-ChaparroA. Pharmacological network study on the effect of 6-gingerol on cervical cancer using computerized databases.J. Biomol. Struct. Dyn.20230011210.1080/07391102.2023.226494337776009
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808352454241115065851
Loading
/content/journals/lddd/10.2174/0115701808352454241115065851
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Bioinformatic; cancer; HepG2; liver; molecular docking; silver nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test