Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Synthetic antibiotics are often much more potent than natural alternatives. They can effectively treat serious and life-threatening bacterial infections.

Methods

The chalcones were synthesized by Claisen-Schmidt condensation and characterized by FT-IR, 1HNMR, 13CNMR and MS methods. All the compounds underwent computational and evaluations for antimicrobial and antioxidant properties.

Results

The docking studies indicated that all the molecules displayed good binding energy with their selective targets, with 6g and 6h showing the best affinity among them. The antimicrobial test results showed that the MIC values ranged from 0.4 to 0.9 mg/ml, and compounds 6g and 6h demonstrated potential for gram-positive bacteria. At the same time, 6k and 6l displayed good inhibition activity against gram-negative bacteria. Compound 6k showed potential against Candida albicans, and compound 6l showed potential against Aspergillus Niger. However, compound 6b showed poor antimicrobial activity. Compounds 6g and 6f also exhibited ferrous ion chelating activity at 28.69 μg/ml and 29.94 μg/ml, respectively.

Conclusion

Based on the IC50 values, it was found that only compounds 6g and 6f had superior against oxidation, which was evaluated using EDTA as a reference. The ADMET properties were analyzed using SwissADME. Furthermore, the lead likeness results showed that 6g exhibited lead-like characteristics.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808343967241224073513
2025-01-16
2025-10-29
Loading full text...

Full text loading...

References

  1. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  2. LeeA.S. de LencastreH. GarauJ. KluytmansJ. Malhotra-KumarS. PeschelA. HarbarthS. Methicillin-resistant Staphylococcus aureus.Nat. Rev. Dis. Primers2018411803310.1038/nrdp.2018.33 29849094
    [Google Scholar]
  3. GuptaA.K. JainN. JindalS. PuriS. RandhawaG.S. Staphylococcal toxic shock syndrome because of skin infection – a case report.J. Family Med. Prim. Care20221184837484010.4103/jfmpc.jfmpc_144_22 36352912
    [Google Scholar]
  4. KellandL. PaphitisS. MacleodC. A contemporary phenomenology of menstruation: Understanding the body in situation and as situation in public health interventions to address menstruationrelated challenges. Womens Stud. Int. Forum,2017633341[). Pergamon.].
    [Google Scholar]
  5. FisherJ.F. QianY. MobasheryS. β-Lactam antibiotics. In: Medicinal Chemistry of Chemotherapeutic Agents; Academic Press,202367113
    [Google Scholar]
  6. RohillaS. SharmaD. Sulfonamides, quinolones, antiseptics, and disinfectants. In: Medicinal Chemistry of Chemotherapeutic Agents. Academic Press2023216310.1016/B978‑0‑323‑90575‑6.00015‑6
    [Google Scholar]
  7. Ampomah-WirekoM. ChenS. LiR. GaoC. WangM. QuY. KongH. NininahazweL. ZhangE. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities.Eur. J. Med. Chem.202426911632610.1016/j.ejmech.2024.116326 38513340
    [Google Scholar]
  8. DrlicaK. Mechanism of fluoroquinolone action.Curr. Opin. Microbiol.19992550450810.1016/S1369‑5274(99)00008‑9 10508721
    [Google Scholar]
  9. CampbellE.A. KorzhevaN. MustaevA. MurakamiK. NairS. GoldfarbA. DarstS.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase.Cell2001104690191210.1016/S0092‑8674(01)00286‑0 11290327
    [Google Scholar]
  10. GrimS.A. RappR.P. MartinC.A. EvansM.E. Trimethoprim-sulfamethoxazole as a viable treatment option for infections caused by methicillin-resistant Staphylococcus aureus.Pharmacotherapy200525225326410.1592/phco.25.2.253.56956 15767239
    [Google Scholar]
  11. RaynerC. MunckhofW.J. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus.Intern. Med. J.200535Suppl. 2S3S1610.1111/j.1444‑0903.2005.00976.x 16271060
    [Google Scholar]
  12. HeithoffD.M. MahanS.P. BarnesV. L.; Leyn, S.A.; George, C.X.; Zlamal, J.E.; Limwongyut, J.; Bazan, G.C.; Fried, J.C.; Fitzgibbons, L.N.; House, J.K.; Samuel, C.E.; Osterman, A.L.; Low, D.A.; Mahan, M.J. A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance.EBioMedicine20238910446110.1016/j.ebiom.2023.104461 36801104
    [Google Scholar]
  13. de OliveiraA.S. CenciA.R. GonçalvesL. ThedyM.E.C. JustinoA. BragaA.L. MeierL. Chalcone derivatives as antibacterial agents: An updated overview.Curr. Med. Chem.202431172314232910.2174/0929867330666230220140819 36803761
    [Google Scholar]
  14. UgwuD.I. EzemaB.E. EzeF.U. Onoabedje EfeturiA. EzemaC.G. EkohO.C. AyoguJ.I. Synthesis and antimalarial activities of chalcone derivatives.Int. J. Chemtech Res.201575119
    [Google Scholar]
  15. JungS.H. ParkS.Y. Kim-PakY. LeeH.K. ParkK.S. ShinK.H. OhuchiK. ShinH.K. KeumS.R. LimS.S. Synthesis and PPAR-γ ligand-binding activity of the new series of 2ú-hydroxychalcone and thiazolidinedione derivatives.Chem. Pharm. Bull. (Tokyo)200654336837110.1248/cpb.54.368 16508194
    [Google Scholar]
  16. AhmedM. SastryV. BanoN. RavichandraS. RaghavendraM. Synthesis and cytotoxic, anti-oxidant activities of new chalcone derivatives.RJC201142289294
    [Google Scholar]
  17. AhmedM. SastryV. BanoN. RavichandraS. RaghavendraM. Synthesis and cytotoxic, anti oxidant activites of new chalcone derivatives.RJC201142289294
    [Google Scholar]
  18. SinhaS. BatovskaD.I. MedhiB. RadotraB.D. BhallaA. MarkovaN. SehgalR. In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes.Malar. J.201918142110.1186/s12936‑019‑3060‑z 31842914
    [Google Scholar]
  19. AnandamR. JadavS.S. AlaV.B. AhsanM.J. BollikollaH.B. Synthesis of new C-dimethylated chalcones as potent antitubercular agents.Med. Chem. Res.20182761690170410.1007/s00044‑018‑2183‑z
    [Google Scholar]
  20. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: a privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  21. JasimH.A. NaharL. JasimM.A. MooreS.A. RitchieK.J. SarkerS.D. Chalcones: Synthetic chemistry follows where nature leads.Biomolecules2021118120310.3390/biom11081203 34439870
    [Google Scholar]
  22. WuJ. LiJ. CaiY. PanY. YeF. ZhangY. ZhaoY. YangS. LiX. LiangG. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents.J. Med. Chem.201154238110812310.1021/jm200946h 21988173
    [Google Scholar]
  23. ShakhatrehM.A. Al-SmadiM.L. KhabourO.F. ShuaibuF.A. HusseinE.I. AlzoubiK.H. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives.Drug Des. Devel. Ther.2016103653366010.2147/DDDT.S116312 27877017
    [Google Scholar]
  24. BurmaogluS. AlgulO. GobekA. Aktas AnilD. UlgerM. ErturkB.G. KaplanE. DogenA. AslanG. Design of potent fluoro-substituted chalcones as antimicrobial agents.J. Enzyme Inhib. Med. Chem.201732149049510.1080/14756366.2016.1265517 28118738
    [Google Scholar]
  25. CircuM.L. AwT.Y. Reactive oxygen species, cellular redox systems, and apoptosis.Free Radic. Biol. Med.201048674976210.1016/j.freeradbiomed.2009.12.022 20045723
    [Google Scholar]
  26. FormanH.J. MaiorinoM. UrsiniF. Signaling functions of reactive oxygen species.Biochemistry201049583584210.1021/bi9020378 20050630
    [Google Scholar]
  27. ZhangJ. WangX. VikashV. YeQ. WuD. LiuY. DongW. ROS and ROS-mediated cellular signaling.Oxid. Med. Cell. Longev.201620161435096510.1155/2016/4350965 26998193
    [Google Scholar]
  28. De Freitas AraújoM.G. HilárioF. VilegasW. Dos SantosL.C. BrunettiI.L. SotomayorC.E. BauabT.M. Correlation among antioxidant, antimicrobial, hemolytic, and antiproliferative properties of Leiothrix spiralis leaves extract.Int. J. Mol. Sci.20121379260927710.3390/ijms13079260 22942765
    [Google Scholar]
  29. AlamM.S. RahmanS.M.M. LeeD.U. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents.Chem. Pap.20156981118112910.1515/chempap‑2015‑0113
    [Google Scholar]
  30. LeeJ.I. ParkS.B. An Effective Synthesis of 3-Methoxyflavones via 1-(2-Hydroxyphenyl)-2-methoxy-3-phenyl-1,3-propanediones.Bull. Korean Chem. Soc.20123341379138210.5012/bkcs.2012.33.4.1379
    [Google Scholar]
  31. LevineC. HiasaH. MariansK.J. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities.Biochim. Biophys. Acta Gene Struct. Expr.199814001-3294310.1016/S0167‑4781(98)00126‑2 9748489
    [Google Scholar]
  32. IwadateY. KatoJ. Identification of a formate-dependent uric acid degradation pathway in Escherichia coli.J. Bacteriol.20192011110112810.1128/JB.00573‑18 30885932
    [Google Scholar]
  33. BerminghamA. DerrickJ.P. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery.BioEssays200224763764810.1002/bies.10114 12111724
    [Google Scholar]
  34. Funakoshi-TagoM. OkamotoK. IzumiR. TagoK. YanagisawaK. NarukawaY. KiuchiF. KasaharaT. TamuraH. Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway.Int. Immunopharmacol.201525118919810.1016/j.intimp.2015.01.012 25614224
    [Google Scholar]
  35. YangE.B. ZhangK. ChengL.Y. MackP. Butein, a specific protein tyrosine kinase inhibitor.Biochem. Biophys. Res. Commun.1998245243543810.1006/bbrc.1998.8452 9571170
    [Google Scholar]
  36. de CastroC.C.B. CostaP.S. LaktinG.T. de CarvalhoP.H.D. GeraldoR.B. de MoraesJ. PintoP.L.S. CouriM.R.C. PintoP.F. Da Silva FilhoA.A. Cardamonin, a schistosomicidal chalcone from Piper aduncum L. (Piperaceae) that inhibits Schistosoma mansoni ATP diphosphohydrolase.Phytomedicine2015221092192810.1016/j.phymed.2015.06.009 26321741
    [Google Scholar]
  37. FuL. HuangX. LaiZ. HuY. LiuH. CaiX. A new 3-benzylchroman derivative from Sappan Lignum (Caesalpinia sappan).Molecules20081381923193010.3390/molecules13081923 18794793
    [Google Scholar]
  38. WashiyamaM. SasakiY. HosokawaT. NagumoS. Anti-inflammatory constituents of Sappan Lignum.Biol. Pharm. Bull.200932594194410.1248/bpb.32.941 19420769
    [Google Scholar]
  39. OhK.Y. Glycosidase inhibitory phenolic compounds from the seed of Psoralea corylifolia.Food Chemistry.20101214940945
    [Google Scholar]
  40. QiuR.L. LiL. ZhuM.H. LiuJ. [Study on the chemical constituents of Psoralea corylifolia]. Zhong Yao Cai,201134812111213 22233033
    [Google Scholar]
  41. ShimomuraK. SugiyamaY. NakamuraJ. AhnM.R. KumazawaS. Component analysis of propolis collected on Jeju Island, Korea.Phytochemistry20139322222910.1016/j.phytochem.2012.02.018 22483235
    [Google Scholar]
  42. WangJ.P. TsaoL.T. RaungS.L. LinC.N. Investigation of the inhibitory effect of broussochalcone A on respiratory burst in neutrophils.Eur. J. Pharmacol.19973202-320120810.1016/S0014‑2999(96)00888‑6 9059855
    [Google Scholar]
  43. HarikumarK.B. KunnumakkaraA.B. AhnK.S. AnandP. KrishnanS. GuhaS. AggarwalB.B. Modification of the cysteine residues in IκBα kinase and NF-κB (p65) by xanthohumol leads to suppression of NF-κB–regulated gene products and potentiation of apoptosis in leukemia cells.Blood200911392003201310.1182/blood‑2008‑04‑151944 18952893
    [Google Scholar]
  44. ChungM.I. WengJ.R. LaiM.H. YenM.H. LinC.N. A new chalcone, xanthones, and a xanthonolignoid from Hypericum geminiflorum.J. Nat. Prod.19996271033103510.1021/np980533+ 10425136
    [Google Scholar]
  45. LeeD. BhatK.P.L. FongH.H.S. FarnsworthN.R. PezzutoJ.M. KinghornA.D. Aromatase Inhibitors from Broussonetia p apyrifera.J. Nat. Prod.200164101286129310.1021/np010288l 11678652
    [Google Scholar]
  46. Caamal-FuentesE. Peraza-SánchezS. Torres-TapiaL. Moo-PucR. Isolation and identification of cytotoxic compounds from Aeschynomene fascicularis, a Mayan medicinal plant.Molecules2015208135631357410.3390/molecules200813563 26213910
    [Google Scholar]
  47. HegazyM.E.F. MohamedA.E-H.H. El-HalawanyA.M. DjemgouP.C. ShahatA.A. ParéP.W. Estrogenic activity of chemical constituents from Tephrosia candida.J. Nat. Prod.201174593794210.1021/np100378d 21510635
    [Google Scholar]
  48. ZhangX.J. LiL.Y. WangS.S. QueS. YangW.Z. ZhangF.Y. GongN-B. ChengW. LiangH. YeM. JiaY-X. ZhangQ-Y. Oxyfadichalcones A–C: three chalcone dimers fused through a cyclobutane ring from Tibetan medicine Oxytropis falcata Bunge.Tetrahedron20136952110741107910.1016/j.tet.2013.11.018
    [Google Scholar]
  49. CuiY. AoM. HuJ. YuL. YuL. Anti-inflammatory activity of licochalcone A isolated from Glycyrrhiza inflata.Z. Naturforsch. C J. Biosci.2008635-636136510.1515/znc‑2008‑5‑609 18669021
    [Google Scholar]
  50. WuW. YeH. WanL. HanX. WangG. HuJ. TangM. DuanX. FanY. HeS. HuangL. PeiH. WangX. LiX. XieC. ZhangR. YuanZ. MaoY. WeiY. ChenL. Millepachine, a novel chalcone, induces G 2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo.Carcinogenesis20133471636164310.1093/carcin/bgt087 23471882
    [Google Scholar]
  51. BarakatA. Al-MajidA.M. SolimanS.M. MabkhotY.N. AliM. GhabbourH.A. FunH.K. WadoodA. Structural and spectral investigations of the recently synthesized chalcone (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one, a potential chemotherapeutic agent.Chem. Cent. J.2015913510.1186/s13065‑015‑0112‑5 26106444
    [Google Scholar]
  52. MasutlhaL.L. Chalcones in the synthesis of heterocyclic compounds: pyrazoles, flavans and pyrimidines. Master's thesis, Botswana International University of Science and Technology: Palapye,2021
    [Google Scholar]
  53. HidalgoA.Y. VelascoM. Sánchez-LaraE. Gómez-RiveraA. Vilchis-ReyesM.A. AlvaradoC. Herrera-RuizM. López-RodríguezR. Romero-CeronioN. Lobato-GarcíaC.E. Synthesis, crystal structures, and molecular properties of three nitro-substituted chalcones.Crystals (Basel)20211112158910.3390/cryst11121589
    [Google Scholar]
  54. ZawadzińskaK. GostyńskiB. Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking.Scientiae Radices202321254610.58332/scirad2023v2i1a02
    [Google Scholar]
  55. NielsenA.T. HoulihanW.J. The aldol condensation.Org. React.2004161438
    [Google Scholar]
  56. BajracharyaG.B. DhakalR. TimalsinaS. Microwave-accelerated synthesis of flavanones through oxidative cyclization of 2ú -hydroxychalcones using acetic acid as a sole catalyst.JNCS202444114315210.3126/jncs.v44i1.62688
    [Google Scholar]
  57. FernandesC.H. ParkS.H. SloopJ. WilmottK. Cyclodehydration and Baker-Venkataraman rearrangement methodologies for the preparation of fluorinated 4H-chromones.Chem. Methodol202045554564
    [Google Scholar]
  58. PetrovO. IvanovaY. GerovaM. SOCl2/EtOH: Catalytic system for synthesis of chalcones.Catal. Commun.20089231531610.1016/j.catcom.2007.06.013
    [Google Scholar]
  59. CallowayN.O. GreenL.D. Reactions in the presence of metallic halides. I. β-unsaturated ketone formation as a side reaction in Friedel—crafts acylations.J. Am. Chem. Soc.193759580981110.1021/ja01284a011
    [Google Scholar]
  60. PatelD.D. LeeJ.M. Applications of ionic liquids.Chem. Rec.201212332935510.1002/tcr.201100036 22711528
    [Google Scholar]
  61. ArmestoD. HorspoolW.M. MartinN. RamosA. SeoaneC. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans.J. Org. Chem.198954133069307210.1021/jo00274a021
    [Google Scholar]
  62. RenY. YuanC. QianY. ChaiH.B. ChenX. GoetzM. KinghornA.D. Constituents of an extract of Cryptocarya rubra housed in a repository with cytotoxic and glucose transport inhibitory effects.J. Nat. Prod.201477355055610.1021/np400809w 24344605
    [Google Scholar]
  63. SongQ.B. LiX.N. ShenT.H. YangS.D. QiangG.R. WuX.L. MaY.X. Synthesis of novel chalcone analogues of ferrocene biarenes.Synth. Commun.200333223935394110.1081/SCC‑120026317
    [Google Scholar]
  64. StaufferF. Cowan-JacobS.W. ScheuflerC. FuretP. Identification of a 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R inhibitors.Bioorg. Med. Chem. Lett.20162682065206710.1016/j.bmcl.2016.02.074 26951750
    [Google Scholar]
  65. JinY. YangL. ZhangF. LiuM. SuK. LiX. WangM. Genetic analysis and clinical features of a pedigree affected with hereditary coagulation factor VII deficiency caused by compound heterozygotic mutations.Zhonghua Yi Xue Yi Chuan Xue Za Zhi2019361010061009 31598947
    [Google Scholar]
  66. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  67. YangB. HaoF. LiJ. ChenD. LiuR. Binding of chrysoidine to catalase: Spectroscopy, isothermal titration calorimetry and molecular docking studies.J. Photochem. Photobiol. B2013128354210.1016/j.jphotobiol.2013.08.006 24001681
    [Google Scholar]
  68. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  69. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.564 10515903
    [Google Scholar]
  70. SadulaA. PeddaboinaU.R. J, P.S.N. Synthesis and characterization of novel chalcone linked imidazolones as potential antimicrobial and antioxidant agents.Med. Chem. Res.201524285185910.1007/s00044‑014‑1179‑6
    [Google Scholar]
  71. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  72. CaronG. KihlbergJ. GoetzG. RatkovaE. PoongavanamV. ErmondiG. Steering new drug discovery campaigns: permeability, solubility, and physicochemical properties in the bRo5 chemical space.ACS Med. Chem. Lett.2021121132310.1021/acsmedchemlett.0c00581 33488959
    [Google Scholar]
  73. SardarH. Drug like potential of daidzein using SwissADME prediction: In silico approaches.Phytonutrients2023
    [Google Scholar]
  74. HannM.M. KeserüG.M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry.Nat. Rev. Drug Discov.201211535536510.1038/nrd3701 22543468
    [Google Scholar]
  75. RonkinS.M. BadiaM. BellonS. GrillotA.L. GrossC.H. GrossmanT.H. ManiN. ParsonsJ.D. StamosD. TrudeauM. WeiY. CharifsonP.S. Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase.Bioorg. Med. Chem. Lett.20102092828283110.1016/j.bmcl.2010.03.052 20356737
    [Google Scholar]
  76. LeeC.J. LiangX. ChenX. ZengD. JooS.H. ChungH.S. BarbA.W. SwansonS.M. NicholasR.A. LiY. TooneE.J. RaetzC.R.H. ZhouP. Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design.Chem. Biol.2011181384710.1016/j.chembiol.2010.11.011 21167751
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808343967241224073513
Loading
/content/journals/lddd/10.2174/0115701808343967241224073513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test