Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Purpose

Post-operative adhesion band formation is a serious post-surgery complication with a highly detrimental impact on patient morbidity and health care costs. In this study, we aimed to investigate the repurposed potential of a safe and FDA-approved drug, metformin, in attenuating post-surgical adhesion band formation in Achilles tendon surgeries in an animal model.

Methods

Wistar albino rats were divided randomly into three groups: sham, positive control, and metformin-treated groups (n=6). We administered Metformin 100 mg/kg orally for 21 days. Achilles tendon tissue sections were stained with Hematoxylin-Eosin and Masson's trichrome to assess the accumulation of inflammatory cells and collagen deposition. Spectrophotometric analysis was performed on tissue samples to determine oxidative stress markers. According to Tang and Ishiyama scoring systems, Achilles tendon adhesion properties were compared.

Results

Using the Tang and Ishiyama scoring system, we showed that metformin significantly decreased the length, density, grading, and severity of adhesion bands at surgery sites (***<0.001). Pathologic morphological changes and oxidative stress markers decreased in tendon tissue samples of metformin-treated rats compared to control (**<0.01, ***<0.001). Moreover, administration of metformin markedly decreased collagen deposition, fibrosis accumulation, and fibrosis quantity score as visualized by Masson’s trichrome staining in tissue sections (*<0.05).

Conclusion

These results suggest that metformin, with its potent anti-inflammatory and anti-fibrotic properties, can be repurposed as a potential therapeutic molecule for preventing post-operative adhesion band formation.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808330601241217101809
2024-12-24
2025-09-02
Loading full text...

Full text loading...

References

  1. CaiC. WangW. LiangJ. LiY. LuM. CuiW. FanC. DengL. LiY. WangF. LiuS. MMP‐2 responsive unidirectional hydrogel‐electrospun patch loading TGF‐β1 siRNA polyplexes for peritendinous anti‐adhesion.Adv. Funct. Mater.2021316200836410.1002/adfm.202008364
    [Google Scholar]
  2. ZhouH. LuH. Advances in the development of anti-adhesive biomaterials for tendon repair treatment.Tissue Eng. Regen. Med.202118111410.1007/s13770‑020‑00300‑533150560
    [Google Scholar]
  3. ThomopoulosS. ParksW.C. RifkinD.B. DerwinK.A. Mechanisms of tendon injury and repair.J. Orthop. Res.201533683283910.1002/jor.2280625641114
    [Google Scholar]
  4. TangJ.B. Clinical outcomes associated with flexor tendon repair.Hand Clin.200521219921010.1016/j.hcl.2004.11.00515882599
    [Google Scholar]
  5. KheilnezhadB. HadjizadehA. A review: Progress in preventing tissue adhesions from a biomaterial perspective.Biomater. Sci.2021982850287310.1039/D0BM02023K33710194
    [Google Scholar]
  6. ChouP.Y. ChenS.H. ChenC.H. ChenS.H. FongY.T. ChenJ.P. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.Acta Biomater.201763859510.1016/j.actbio.2017.09.01028919215
    [Google Scholar]
  7. M-k, LU Research progress on preparation materials of anti-adhesion membranes in the prevention of tendon adhesion.J. Shanghai Jiaotong Univ.2021414550
    [Google Scholar]
  8. SchnürigerB. BarmparasG. BrancoB.C. LustenbergerT. InabaK. DemetriadesD. Prevention of postoperative peritoneal adhesions: A review of the literature.Am. J. Surg.2011201111112110.1016/j.amjsurg.2010.02.00820817145
    [Google Scholar]
  9. RomeroR. ErezO. HüttemannM. MaymonE. PanaitescuB. Conde-AgudeloA. PacoraP. YoonB.H. GrossmanL.I. Metformin, the aspirin of the 21st century: Its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity.Am. J. Obstet. Gynecol.2017217328230210.1016/j.ajog.2017.06.00328619690
    [Google Scholar]
  10. WangY.W. HeS.J. FengX. ChengJ. LuoY.T. TianL. HuangQ. Metformin: A review of its potential indications.Drug Des. Devel. Ther.2017112421242910.2147/DDDT.S14167528860713
    [Google Scholar]
  11. SHOKOOH S, AHMADI The effect of L-carnitine and metformin on histomorphology characteristics of uterus in mice with polycystic ovary.Biharean Biol.2020141
    [Google Scholar]
  12. SafeS. NairV. KarkiK. Metformin-induced anticancer activities: Recent insights.Biol. Chem.2018399432133510.1515/hsz‑2017‑027129272251
    [Google Scholar]
  13. BharathL.P. NikolajczykB.S. The intersection of metformin and inflammation.Am. J. Physiol. Cell Physiol.20213205C873C87910.1152/ajpcell.00604.202033689478
    [Google Scholar]
  14. SaishoY. Metformin and inflammation: Its potential beyond glucose-lowering effect.Endocr. Metab. Immune Disord. Drug Targets201515319620510.2174/1871530315666150316124019
    [Google Scholar]
  15. RangarajanS. BoneN.B. ZmijewskaA.A. JiangS. ParkD.W. BernardK. LocyM.L. RaviS. DeshaneJ. MannonR.B. AbrahamE. Darley-UsmarV. ThannickalV.J. ZmijewskiJ.W. Metformin reverses established lung fibrosis in a bleomycin model.Nat. Med.20182481121112710.1038/s41591‑018‑0087‑629967351
    [Google Scholar]
  16. AsgharzadehF. BarnehF. FakhraieM. Adel barkhordar, S.; Shabani, M.; Soleimani, A.; Rahmani, F.; Ariakia, F.; Mehraban, S.; Avan, A.; Hashemzehi, M.; Arjmand, M.H.; Behnam-Rassouli, R.; Jaberi, N.; Sayyed-Hosseinian, S.H.; Ferns, G.A.; Ryzhikov, M.; Jafari, M.; Khazaei, M.; Hassanian, S.M. Metformin inhibits polyphosphate-induced hyper-permeability and inflammation.Int. Immunopharmacol.20219910793710.1016/j.intimp.2021.10793734271418
    [Google Scholar]
  17. HattoriY. SuzukiK. HattoriS. KasaiK. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells.Hypertension200647611831188
    [Google Scholar]
  18. WuW. WangS. LiuQ. ShanT. WangY. Metformin protects against LPS-induced intestinal barrier dysfunction by activating AMPK pathway.Mol. Pharm.20181583272328410.1021/acs.molpharmaceut.8b0033229969038
    [Google Scholar]
  19. ParkC.S. BangB.R. KwonH.S. MoonK.A. KimT.B. LeeK.Y. MoonH.B. ChoY.S. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.Biochem. Pharmacol.201284121660167010.1016/j.bcp.2012.09.02523041647
    [Google Scholar]
  20. MudgalJ. NampoothiriM. Basu MallikS. KinraM. HallS. GrantG. Anoopkumar-DukieS. RaoC.M. AroraD. Possible involvement of metformin in downregulation of neuroinflammation and associated behavioural changes in mice.Inflammopharmacology201927594194810.1007/s10787‑019‑00638‑w31482259
    [Google Scholar]
  21. QinX. DuD. ChenQ. WuM. WuT. WenJ. JinY. ZhangJ. WangS. Metformin prevents murine ovarian aging.Aging 201911113785379410.18632/aging.10201631182682
    [Google Scholar]
  22. TangJ.B. ShiD. ZhangQ.G. Biomechanical and histologic evaluation of tendon sheath management.J. Hand Surg. Am.199621590090810.1016/S0363‑5023(96)80212‑78891993
    [Google Scholar]
  23. IshiyamaN. MoroT. IshiharaK. OheT. MiuraT. KonnoT. OhyamaT. KimuraM. KyomotoM. NakamuraK. KawaguchiH. The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions.Biomaterials201031144009401610.1016/j.biomaterials.2010.01.10020149434
    [Google Scholar]
  24. SoleimaniA. AsgharzadehF. RahmaniF. AvanA. MehrabanS. FakhraeiM. ArjmandM.H. BinabajM.M. ParizadehM.R. FernsG.A. RyzhikovM. AfshariA.R. NaghinezhadJ. Sayyed-HosseinianS.H. KhazaeiM. HassanianS.M. Novel oral transforming growth factor‐β signaling inhibitor potently inhibits postsurgical adhesion band formation.J. Cell. Physiol.202023521349135710.1002/jcp.2905331313829
    [Google Scholar]
  25. ArjmandM.H. Zahedi-AvvalF. BarnehF. MousaviS.H. AsgharzadehF. HashemzehiM. SoleimaniA. AvanA. FakhraieM. NasiriS.N. MehrabanS. FernsG.A. RyzhikovM. JafariM. KhazaeiM. HassanianS.M. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation.J. Surg. Res.202024817118110.1016/j.jss.2019.10.02931923833
    [Google Scholar]
  26. ChenJ.P. ChenS.H. ChenC-H. ShalumonK.T. Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion.Int. J. Nanomedicine201494079409210.2147/IJN.S6793125187711
    [Google Scholar]
  27. IsodaK. YoungJ.L. ZirlikA. MacFarlaneL.A. TsuboiN. GerdesN. SchönbeckU. LibbyP. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells.Arterioscler. Thromb. Vasc. Biol.200626361161710.1161/01.ATV.0000201938.78044.7516385087
    [Google Scholar]
  28. de JagerJ. KooyA. SchalkwijkC. van der KolkJ. LehertP. BetsD. WulffeléM.G. DonkerA.J. StehouwerC.D.A. Long‐term effects of metformin on endothelial function in type 2 diabetes: A randomized controlled trial.J. Intern. Med.20142751597010.1111/joim.1212823981104
    [Google Scholar]
  29. TessierD. MaheuxP. KhalilA. FülöpT. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes.Metabolism199948789790310.1016/S0026‑0495(99)90226‑310421233
    [Google Scholar]
  30. PavlovićD. KocićR. KocićG. JevtovićT. RadenkovićS. MikićD. StojanovićM. DjordjevićP.B. Effect of four‐week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes.Diabetes Obes. Metab.20002425125610.1046/j.1463‑1326.2000.00089.x11225659
    [Google Scholar]
  31. ĆosićV. AntićS. PesićM. JovanovićO. KundalićS. DjordjevićV.B. Monotherapy with metformin: Does it improve hypoxia in type 2 diabetic patients?Clin. Chem. Lab. Med.2001399818821
    [Google Scholar]
  32. ArjmandM.H. HashemzehiM. SoleimaniA. AsgharzadehF. AvanA. MehrabanS. FakhraeiM. FernsG.A. RyzhikovM. GharibM. SalariR. Sayyed HoseinianS.H. ParizadehM.R. KhazaeiM. HassanianS.M. Therapeutic potential of active components of saffron in post-surgical adhesion band formation.J. Tradit. Complement. Med.202111432833510.1016/j.jtcme.2021.01.00234195027
    [Google Scholar]
  33. SatoN. TakasakaN. YoshidaM. TsubouchiK. MinagawaS. ArayaJ. SaitoN. FujitaY. KuritaY. KobayashiK. ItoS. HaraH. KadotaT. YanagisawaH. HashimotoM. UtsumiH. WakuiH. KojimaJ. NumataT. KanekoY. OdakaM. MorikawaT. NakayamaK. KohrogiH. KuwanoK. Metformin attenuates lung fibrosis development via NOX4 suppression.Respir. Res.201617110710.1186/s12931‑016‑0420‑x27576730
    [Google Scholar]
  34. KheirollahiV. WasnickR.M. BiasinV. Vazquez-ArmendarizA.I. ChuX. MoiseenkoA. WeissA. WilhelmJ. ZhangJ.S. KwapiszewskaG. HeroldS. SchermulyR.T. MariB. LiX. SeegerW. GüntherA. BellusciS. El AghaE. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis.Nat. Commun.2019101298710.1038/s41467‑019‑10839‑031278260
    [Google Scholar]
  35. XiaoH. MaX. FengW. FuY. LuZ. XuM. ShenQ. ZhuY. ZhangY. Metformin attenuates cardiac fibrosis by inhibiting the TGFβ1–Smad3 signalling pathway.Cardiovasc. Res.201087350451310.1093/cvr/cvq06620200042
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808330601241217101809
Loading
/content/journals/lddd/10.2174/0115701808330601241217101809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test