Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Mushrooms are shown to protect against the side effects of cancer. Therefore, mushrooms with proven anticancer properties and active ingredients are fascinating in the search for new cancer drugs.

Objective

In this study, the effects of extracts from (M1), (M2), (M3), (M4), and (M5) together on HCT116 were investigated. Mesenchymal stem cells (MSCs) were used to study the effect on healthy cells.

Methods

MTT was used to determine cell viability. Dose-response curves were generated, the IC values of the compounds were calculated, and the effect of the extracts was compared using it. The FTIR was used to analyze the quantitative changes of the cellular components.

Results and Discussion

The evaluation of the IC values of all fungal species showed that they reduced the cell viability of HCT116 cells. In contrast, no significant reduction in cell viability was observed in MSCs. Changes in the ratio of cell membrane lipids, proteins, and cell nucleic acids between control and fungal-treated HCT116 cells were detected by FTIR.

Conclusion

Many of the chemotherapeutic agents are of plant origin, and many resources should still be explored to inhibit the side effects of cancer therapy. The data obtained through this experiment will serve as a reference for studies to be a new source of anticancer drugs in modern pharmacology.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808324049241108063414
2024-11-14
2025-09-27
Loading full text...

Full text loading...

References

  1. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2023.CA Cancer J. Clin.202373323325410.3322/caac.2177236856579
    [Google Scholar]
  2. RuanY. YuanP.P. LiP.Y. ChenY. FuY. GaoL.Y. WeiY.X. ZhengY.J. LiS.F. FengW.S. ZhengX.K. Tingli Dazao Xiefei Decoction ameliorates asthma in vivo and in vitro from lung to intestine by modifying NO–CO metabolic disorder mediated inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders.J. Ethnopharmacol.202331311650310.1016/j.jep.2023.11650337116727
    [Google Scholar]
  3. WongM.C.S. HuangJ. LokV. WangJ. FungF. DingH. ZhengZ.J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location.Clin. Gastroenterol. Hepatol.2021195955966.e6110.1016/j.cgh.2020.02.02632088300
    [Google Scholar]
  4. MingT. LeiJ. PengY. WangM. LiangY. TangS. TaoQ. WangM. TangX. HeZ. LiuX. XuH. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis.Phytother. Res.20243883954397210.1002/ptr.825838837315
    [Google Scholar]
  5. SirishaS. A review on delivery of anticancer drugs by smart nanocarriers: Data obtained from past one decade.Res J Pharm Technol.2020123185190
    [Google Scholar]
  6. AshrafizadehM. DaiJ. TorabianP. NabaviN. ArefA.R. AljabaliA.A.A. TambuwalaM. ZhuM. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance.Cell. Mol. Life Sci.202481121410.1007/s00018‑024‑05236‑w38733529
    [Google Scholar]
  7. ZhouX. GuoY. YangK. LiuP. WangJ. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing.J. Ethnopharmacol.202228211466210.1016/j.jep.2021.11466234555452
    [Google Scholar]
  8. ChaturvediV.K. AgarwalS. GuptaK.K. RamtekeP.W. SinghM.P. Medicinal mushroom: boon for therapeutic applications.3 Biotech.201888120
    [Google Scholar]
  9. PatelS. GoyalA. Recent developments in mushrooms as anticancer therapeutics: A review.3 Biotech.201221115
    [Google Scholar]
  10. MengZ. TanY. DuanY. LiM. Monaspin b, a novel cyclohexyl-furan from cocultivation of Monascus purpureus and Aspergillus oryzae, exhibits potent antileukemic activity.J. Agric. Food Chem.20247221114112310.1021/acs.jafc.3c0818738166364
    [Google Scholar]
  11. LiJ. GuA. NongX.M. ZhaiS. YueZ.Y. LiM.Y. LiuY. Six‐Membered Aromatic Nitrogen Heterocyclic Anti‐Tumor Agents: Synthesis and Applications.Chem. Rec.20232312e20230029310.1002/tcr.20230029338010365
    [Google Scholar]
  12. ZhangM. OtsukiK. LiW. Molecular networking as a natural products discovery strategy.Acta Materia Medica20232212614110.15212/AMM‑2023‑0007
    [Google Scholar]
  13. ConchranK.W. Medical effects in the biology and cultivation of Edible Mushrooms; Chung, S.T. HayesW.A. New YorkAcademic Press1978
    [Google Scholar]
  14. ZhaoC. TangX. ChenX. JiangZ. Multifaceted carbonized metal–organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy.ACS Nano20241827178521786810.1021/acsnano.4c0402238939981
    [Google Scholar]
  15. KaygusuzO. KaygusuzM. DodurgaY. SeçmeM. HerkenE.N. GezerK. Assessment of the antimicrobial, antioxidant and cytotoxic activities of the wild edible mushroom Agaricus lanipes (F.H. Møller & Jul. Schäff.) Hlaváček.Cytotechnology201769113514410.1007/s10616‑016‑0045‑428058568
    [Google Scholar]
  16. S, W. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides.Appl. Microbiol. Biotechnol.200260325827410.1007/s00253‑002‑1076‑712436306
    [Google Scholar]
  17. DuanJ. SunJ. JiangT. MaX. LiX. WangY. ZhangF. LiuC. Podophyllotoxin-mediated neurotoxicity via the microbiota-gut-brain axis in SD rats based on the toxicological evidence chain (TEC) concept.Sci. Total Environ.202490716810610.1016/j.scitotenv.2023.16810637884145
    [Google Scholar]
  18. De SilvaD.D. RapiorS. FonsF. BahkaliA.H. HydeK.D. Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action.Fungal Divers.201255113510.1007/s13225‑012‑0151‑323097638
    [Google Scholar]
  19. BlagodatskiA. YatsunskayaM. MikhailovaV. TiastoV. KaganskyA. KatanaevV.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy.Oncotarget2018949292592927410.18632/oncotarget.2566030018750
    [Google Scholar]
  20. Biological evaluation of medical devices. 2009. Available from: https://www.iso.org/standard/36406.html (accessed on 23-10-2024)
  21. ÖzerkanD. ErtikO. KayaB. KurucaS.E. YanardağR. ÜlküsevenB. Novel palladium (II) complexes with tetradentate thiosemicarbazones. Synthesis, characterization, in vitro cytotoxicity and xanthine oxidase inhibition.Invest. New Drugs20193761187119710.1007/s10637‑019‑00751‑130874940
    [Google Scholar]
  22. RevathiS. GovindarajanR.K. RameshkumarN. HakkimF.L. MohammedA.B. KrishnanM. KayalvizhiN. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling.Biocatal. Agric. Biotechnol.20171132232910.1016/j.bcab.2017.08.005
    [Google Scholar]
  23. RaiS.N. MishraD. SinghP. VamanuE. SinghM.P. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases.Biomed. Pharmacother.202113711137710.1016/j.biopha.2021.11137733601145
    [Google Scholar]
  24. SongF.Q. LiuY. KongX.S. ChangW. SongG. Progress on understanding the anticancer mechanisms of medicinal mushroom: inonotus obliquus.Asian Pac. J. Cancer Prev.20131431571157810.7314/APJCP.2013.14.3.157123679238
    [Google Scholar]
  25. VedenichevaN. Al-MaaliG. BiskoN. KosakivskaI. GarmanchukL. OstapchenkoL. Effect of bioactive extracts with high cytokinin content from micelial biomass of Hericium coralloides and Fomitopsis officinalis on tumor cells in vitro. Bulletin of Taras Shevchenko National University of Kyiv. Series.Biology2019793313710.17721/1728_2748.2019.79.31‑37
    [Google Scholar]
  26. ZhangJ. ZhangJ. ZhaoL. ShuiX. WangL. WuY. Antioxidant and anti-aging activities of ethyl acetate extract of the coral tooth mushroom, Hericium coralloides (Agaricomycetes).Int. J. Med. Mushrooms201921656157010.1615/IntJMedMushrooms.201903084031679228
    [Google Scholar]
  27. KosanićM. RankovićB. RančićA. StanojkovićT. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera.Yao Wu Shi Pin Fen Xi201624347748428911552
    [Google Scholar]
  28. DingX. HouY. HouW. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray.Carbohydr. Polym.201289239740210.1016/j.carbpol.2012.03.02024750736
    [Google Scholar]
  29. SadiG. KayaA. YalcinH.A. EmsenB. KocabasA. KartalD.I. AltayA. Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties.Int. J. Med. Mushrooms2016181839510.1615/IntJMedMushrooms.v18.i1.10027279448
    [Google Scholar]
  30. ÖzmenA. DeğirmenciE.H. In vitro anticancer and apoptotic activity of edible mushroom Lepista nuda (Bull.) Cooke on leukemia and breast cancer compared with protocatechuic acid, paclitaxel and doxorubicin.Indian J. Exp. Biol.20215903147152
    [Google Scholar]
  31. GuY.H. SivamG. Cytotoxic effect of oyster mushroom Pleurotus ostreatus on human androgen-independent prostate cancer PC-3 cells.J. Med. Food20069219620410.1089/jmf.2006.9.19616822205
    [Google Scholar]
  32. EkowatiN. MumpuniA. MuljowatiJ.S. Effectiveness of Pleurotus ostreatus Extract Through Cytotoxic Test and Apoptosis Mechanism of Cervical Cancer Cells. Biosaintifika.Journal of Biology & Biology Education.201791148155
    [Google Scholar]
  33. RossianaN. NurA.A. MayawatieB. AndayaningsihP. Cytotoxicity assay of ethyl acetate extract shimeji (Lyophyllum shimeji (Kawam.) Hongo) and white oyster mushroom (Pleurotus ostreatus Jacq.) against HCT-116 cell line.In: I.O.P. Conference Series: Earth and Environmental Science; I.O.P. Publishing2018
    [Google Scholar]
  34. KimJ.H. KimS.J. ParkH.R. ChoiJ.I. JuY.C. The different antioxidant and anticancer activities depending on the color of oyster mushrooms.J. Med. Plants Res.200931210161020
    [Google Scholar]
  35. XieL. ShenM. HuangR. LiuX. YuY. LuH. XieJ. Apoptosis of colon cancer CT-26 cells induced polysaccharide from Cyclocarya paliurus and its phosphorylated derivative via intrinsic mitochondrial passway.Food Sci. Hum. Wellness20231251545155610.1016/j.fshw.2023.02.002
    [Google Scholar]
  36. TobiaschE. Differentiation potential of adult human mesenchymal stem cells. In: Stem Cell Engineering.Berlin, HeidelbergSpringer2011617710.1007/978‑3‑642‑11865‑4_3
    [Google Scholar]
  37. TonkC.H. WitzlerM. SchulzeM. Mesenchymal stem cells. In: Essential Current Concepts in Stem Cell Biology.ChamSpringer2020213910.1007/978‑3‑030‑33923‑4_2
    [Google Scholar]
  38. CorbeauA. KuipersS.C. de BoerS.M. HorewegN. HoogemanM.S. GodartJ. NoutR.A. Correlations between bone marrow radiation dose and hematologic toxicity in locally advanced cervical cancer patients receiving chemoradiation with cisplatin: a systematic review.Radiother. Oncol.202116412813710.1016/j.radonc.2021.09.00934560187
    [Google Scholar]
  39. SanmartinM.C. BorzoneF.R. GiorelloM.B. PacienzaN. YannarelliG. ChasseingN.A. Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: The role of mesenchymal stromal cells.Crit. Rev. Oncol. Hematol.202116410341610.1016/j.critrevonc.2021.10341634237436
    [Google Scholar]
  40. ZengM. ZhangY. ZhangX. ZhangW. YuQ. ZengW. MaD. GanJ. YangZ. JiangX. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression.J. Ethnopharmacol.202228911502810.1016/j.jep.2022.11502835077825
    [Google Scholar]
  41. ChenY. ChenH. LiY. ChenZ. WuY. McGowanE. QuX. LinY. SunB. Chinese herbal medicine Guilu erxian jiao attenuates bone marrow suppression following chemotherapy in patients with advanced lung cancer.Translational Metabolic Syndrome Research20203252810.1016/j.tmsr.2020.05.001
    [Google Scholar]
  42. KvernelandA.H. BorchT.H. GranhøjJ. SengeløvH. DoniaM. SvaneI.M. Bone marrow toxicity and immune reconstitution in melanoma and non-melanoma solid cancer patients after non-myeloablative conditioning with chemotherapy and checkpoint inhibition.Cytotherapy202123872472910.1016/j.jcyt.2021.03.00333933372
    [Google Scholar]
  43. BrotoG.E. SilvaP.R.B. TrigoF.C. VictorinoV.J. BonifácioK.L. PavanelliW.R. Tomiotto-PelissierF. GarbimM.R. OliveiraS.T. JumesJ.J. PanisC. BarbosaD.S. Impact of the induction phase chemotherapy on cytokines and oxidative markers in peripheral and bone marrow plasma of children with acute lymphocytic leukemia.Current Research in Immunology2021216316810.1016/j.crimmu.2021.09.00235492386
    [Google Scholar]
  44. GülerG. AcikgozE. Karabay YavasogluN.Ü. BakanB. GoormaghtighE. AktugH. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy.Analyst (Lond.)201814371624163410.1039/C8AN00017D29497718
    [Google Scholar]
  45. GierobaB. ArczewskaM. Sławińska-BrychA. RzeskiW. StepulakA. GagośM. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023111811210.1016/j.saa.2020.11811232014658
    [Google Scholar]
  46. ZhouJ. WangZ. SunS. LiuM. ZhangH. A rapid method for detecting conformational changes during differentiation and apoptosis of HL60 cells by Fourier‐transform infrared spectroscopy.Biotechnol. Appl. Biochem.200133212713210.1042/BA2000007411277866
    [Google Scholar]
  47. DreissigI. MachillS. SalzerR. KrafftC. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression.Spectrochim. Acta A Mol. Biomol. Spectrosc.20097152069207510.1016/j.saa.2008.08.008
    [Google Scholar]
  48. TaylorS.E. CheungK.T. PatelI.I. TrevisanJ. StringfellowH.F. AshtonK.M. WoodN.J. KeatingP.J. Martin-HirschP.L. MartinF.L. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach.Br. J. Cancer2011104579079710.1038/sj.bjc.660609421326237
    [Google Scholar]
  49. MossobaM.M. Al-KhaldiS.F. KirkwoodJ. FryF.S. SedmanJ. Printing microarrays of bacteria for identification by infrared microspectroscopy.Spectroscopy (Springf.)2005381229235
    [Google Scholar]
  50. ChiribogaL. XieP. YeeH. VigoritaV. ZarouD. ZakimD. DiemM. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix.Biospectroscopy199841475310.1002/(SICI)1520‑6343(1998)4:1<47::AID‑BSPY5>3.0.CO;2‑P9547014
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808324049241108063414
Loading
/content/journals/lddd/10.2174/0115701808324049241108063414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test