Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Introduction

Botulinum neurotoxins are the most poisonous substances reported and listed in category ‘A’ of biowarfare agents. As serotype identification is a time-consuming process and there is no antidote commercially available, the development of inhibitors against serotypes causing human botulism would be beneficial. In the present study, a ligand-based method was applied to identify the “hits” that could have the potential to act as countermeasures against human-intoxicating BoNTs.

Methods

For this purpose, a computational approach using Molegro Virtual Docker and AutoDock tools was performed, where around thirty-five derivatives were designed and docked into the catalytic domain of BoNT/A, B, E, and F. The designed compounds were also studied for their ADME properties using an online web tool.

Results and Discussion

Analysis of the molecular docking data of the complex by Molegro Virtual Docker revealed a high binding affinity between the target and designed ligands, with the MolDock score between -139.85 and -88.24 kcal/mol, whereas the AutoDock score ranged between -11.65 and -5.30 kcal/mol. Three SMNPIs, A11, A18, and A20, exhibited better binding affinities with the target proteins BoNT/A, /B, E, and /F and could be potential pan-active inhibitors. The ADME/T study showed that the designed ligands were less toxic and possessed drug-resemblance properties by considering the Lipinski, Ghose, Veber, and Egan rules, with a bioavailability score of 0.56.

Conclusion

Our study provides insight into ‘hits’, which can lead to further progress in experimental studies and the development of new antidotes for botulism.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217332545241028065445
2024-12-10
2025-10-21
Loading full text...

Full text loading...

References

  1. ArnonS.S. SchechterR. InglesbyT.V. HendersonD.A. BartlettJ.G. AscherM.S. EitzenE. FineA.D. HauerJ. LaytonM. LillibridgeS. OsterholmM.T. O’TooleT. ParkerG. PerlT.M. RussellP.K. SwerdlowD.L. TonatK. Botulinum toxin as a biological weapon: medical and public health management.JAMA200128581059107010.1001/jama.285.8.105911209178
    [Google Scholar]
  2. HillK.K. SmithT.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes.Curr. Top. Microbiol. Immunol.201336412023239346
    [Google Scholar]
  3. BlackJ.D. DollyJ.O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves.J. Cell Biol.1986103252153410.1083/jcb.103.2.5213733877
    [Google Scholar]
  4. BlackJ.D. DollyJ.O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis.J. Cell Biol.1986103253554410.1083/jcb.103.2.5353015983
    [Google Scholar]
  5. MontecuccoC. SchiavoG. Structure and function of tetanus and botulinum neurotoxins.Q. Rev. Biophys.199528442347210.1017/S00335835000032928771234
    [Google Scholar]
  6. PirazziniM. Azarnia TehranD. ZanettiG. MegighianA. ScorzetoM. FilloS. ShoneC.C. BinzT. RossettoO. ListaF. MontecuccoC. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins.Cell Rep.2014861870187810.1016/j.celrep.2014.08.01725220457
    [Google Scholar]
  7. SathyamoorthyV. DasGuptaB.R. Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E.J. Biol. Chem.198526019104611046610.1016/S0021‑9258(19)85105‑04030755
    [Google Scholar]
  8. SchiavoG. RossettoO. CatsicasS. Polverino de LauretoP. DasGuptaB.R. BenfenatiF. MontecuccoC. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E.J. Biol. Chem.199326832237842378710.1016/S0021‑9258(20)80452‑98226912
    [Google Scholar]
  9. SchiavoG. ShoneC.C. RossettoO. AlexanderF.C. MontecuccoC. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin.J. Biol. Chem.199326816115161151910.1016/S0021‑9258(19)50230‑78505288
    [Google Scholar]
  10. AhmedS.A. OlsonM.A. LudivicoM.L. GilsdorfJ. SmithL.A. Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity.Protein J.200827315116210.1007/s10930‑007‑9118‑818213512
    [Google Scholar]
  11. SchiavoG.G. BenfenatiF. PoulainB. RossettoO. de LauretoP.P. DasGuptaB.R. MontecuccoC. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin.Nature1992359639883283510.1038/359832a01331807
    [Google Scholar]
  12. McNuttP.M. Vazquez-CintronE.J. TenezacaL. OndeckC.A. KellyK.E. MangkhalakhiliM. MachamerJ.B. AngelesC.A. GlotfeltyE.J. CikaJ. BenjumeaC.H. WhitfieldJ.T. BandP.A. ShoemakerC.B. IchtchenkoK. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism.Sci. Transl. Med.202113575eabd778910.1126/scitranslmed.abd778933408188
    [Google Scholar]
  13. MiyashitaS.I. ZhangJ. ZhangS. ShoemakerC.B. DongM. Delivery of single-domain antibodies into neurons using a chimeric toxin–based platform is therapeutic in mouse models of botulism.Sci. Transl. Med.202113575eaaz419710.1126/scitranslmed.aaz419733408184
    [Google Scholar]
  14. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  15. MueggeI. RareyM. Small molecule docking and scoring.Rev. Comput. Chem.200117160
    [Google Scholar]
  16. SousaS.F. FernandesP.A. RamosM.J. Protein–ligand docking: Current status and future challenges.Proteins2006651152610.1002/prot.2108216862531
    [Google Scholar]
  17. KaaproA. OjanenJ. Protein docking.2002Available from: http://www.lce.hut.fi/teaching/S-114.500/k2002/Protdock.pdf
  18. MorrisG.M. GoodsellD.S. HallidayR.S. HueyR. HartW.E. BelewR.K. OlsonA.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J. Comput. Chem.199819141639166210.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  19. MorrisG.M. GoodsellD.S. HueyR. OlsonA.J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4.J. Comput. Aided Mol. Des.199610429330410.1007/BF001244998877701
    [Google Scholar]
  20. GoodsellD.S. OlsonA.J. Automated docking of substrates to proteins by simulated annealing.Proteins19908319520210.1002/prot.3400803022281083
    [Google Scholar]
  21. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  22. HalgrenT.A. MurphyR.B. FriesnerR.A. BeardH.S. FryeL.L. PollardW.T. BanksJ.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.J. Med. Chem.20044771750175910.1021/jm030644s15027866
    [Google Scholar]
  23. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  24. RepaskyM.P. MurphyR.B. BanksJ.L. GreenwoodJ.R. Tubert-BrohmanI. BhatS. FriesnerR.A. Docking performance of the glide program as evaluated on the Astex and DUD datasets: A complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide.J. Comput. Aided Mol. Des.201226678779910.1007/s10822‑012‑9575‑922576241
    [Google Scholar]
  25. EwingT.J.A. KuntzI.D. Critical evaluation of search algorithms for automated molecular docking and database screening.J. Comput. Chem.19971891175118910.1002/(SICI)1096‑987X(19970715)18:9<1175::AID‑JCC6>3.0.CO;2‑O
    [Google Scholar]
  26. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e16722650
    [Google Scholar]
  27. ChauhanR. ChauhanV. SonkarP. VimalM. DhakedR.K. Targeted 8-hydroxyquinoline fragment based small molecule drug discovery against neglected botulinum neurotoxin type F.Bioorg. Chem.20199210329710.1016/j.bioorg.2019.10329731557621
    [Google Scholar]
  28. SilvaggiN.R. AllenK.N. 3BON X-ray structure of the C. botulinum neurotoxin type A catalytic domain at 1.20 Å.2008Available from: https://www.rcsb.org/structure/3BON(2008)
  29. HansonM.A. StevensR.C. 1F82 X-ray structure of the C. botulinum neurotoxin type B catalytic domain at 2.20 Å.2000Available from: https://www.rcsb.org/structure/1F82
  30. AgarwalR. EswaramoorthyS. KumaranD. BinzT. SwaminathanS. 1T3A X-ray structure of the C. botulinum neurotoxin type E catalytic domain at 2.16 Å.2004Available from: https://www.rcsb.org/structure/1T3A
  31. AgarwalR. BinzT. SwaminathanS. 2A8A X-ray structure of the C. botulinum neurotoxin type F catalytic domain at 2.00 Å.2005Available from: https://www.rcsb.org/structure/2A8A
  32. GehlhaarD.K. VerkhivkerG. RejtoP.A. FogelD.B. FogelL.J. FreerS.T. Docking conformationally flexible small molecules into a protein binding site through evolutionary programming.The MIT Press199510.7551/mitpress/2887.003.0053
    [Google Scholar]
  33. GehlhaarD.K. BouzidaD. RejtoP.A. Fully automated and rapid flexible docking of inhibitors covalently bound to serine proteases.Lect. Notes Comput. Sci.1998144744946110.1007/BFb0040797
    [Google Scholar]
  34. YangJ.M. ChenC.C. GEMDOCK: A generic evolutionary method for molecular docking.Proteins200455228830410.1002/prot.2003515048822
    [Google Scholar]
  35. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  36. LacyD.B. StevensR.C. Sequence homology and structural analysis of the clostridial neurotoxins.J. Mol. Biol.199929151091110410.1006/jmbi.1999.294510518945
    [Google Scholar]
  37. KumaranD. EswaramoorthyS. FureyW. NavazaJ. SaxM. SwaminathanS. Domain organization in Clostridium botulinum neurotoxin type E is unique: Its implication in faster translocation.J. Mol. Biol.2009386123324510.1016/j.jmb.2008.12.02719118561
    [Google Scholar]
  38. BoldtG.E. KennedyJ.P. JandaK.D. Identification of a potent botulinum neurotoxin a protease inhibitor using in situ lead identification chemistry.Org. Lett.2006881729173210.1021/ol060321116597152
    [Google Scholar]
  39. BremerP.T. AdlerM. PhungC.H. SinghA.K. JandaK.D. Newly designed quinolinol inhibitors mitigate the effects of botulinum neurotoxin A in enzymatic, cell-based, and ex vivo assays.J. Med. Chem.201760133834810.1021/acs.jmedchem.6b0139327966961
    [Google Scholar]
  40. CagličD. KruteinM.C. BompianiK.M. BarlowD.J. BenoniG. PelletierJ.C. ReitzA.B. LairsonL.L. HouseknechtK.L. SmithG.R. DickersonT.J. Identification of clinically viable quinolinol inhibitors of botulinum neurotoxin A light chain.J. Med. Chem.201457366967610.1021/jm401216424387280
    [Google Scholar]
  41. Roxas-DuncanV. EnyedyI. MontgomeryV.A. EccardV.S. CarringtonM.A. LaiH. GulN. YangD.C.H. SmithL.A. Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A.Antimicrob. Agents Chemother.20095383478348610.1128/AAC.00141‑0919528275
    [Google Scholar]
  42. PangY.P. DavisJ. WangS. ParkJ.G. NambiarM.P. SchmidtJ.J. MillardC.B. Small molecules showing significant protection of mice against botulinum neurotoxin serotype A.PLoS One201054e1012910.1371/journal.pone.001012920405003
    [Google Scholar]
  43. SekiH. XueS. HixonM.S. PellettS. Remes̆M. JohnsonE.A. JandaK.D. Toward the discovery of dual inhibitors for botulinum neurotoxin A: Concomitant targeting of endocytosis and light chain protease activity.Chem. Commun. (Camb.)201551286226622910.1039/C5CC00677E25759983
    [Google Scholar]
  44. AdlerM. NicholsonJ.D. HackleyB.E. HackleyB.E.Jr Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity.FEBS Lett.1998429323423810.1016/S0014‑5793(98)00492‑X9662424
    [Google Scholar]
  45. AnneC. TurcaudS. QuancardJ. TeffoF. MeudalH. Fournié-ZaluskiM.C. RoquesB.P. Development of potent inhibitors of botulinum neurotoxin type B.J. Med. Chem.200346224648465610.1021/jm030068014561084
    [Google Scholar]
  46. BlommaertA. TurcaudS. AnneC. RoquesB.P. Small tripeptide surrogates with low nanomolar affinity as potent inhibitors of the botulinum neurotoxin B metallo-proteolytic activity.Bioorg. Med. Chem.200412113055306210.1016/j.bmc.2004.03.00615142564
    [Google Scholar]
  47. EswaramoorthyS. KumaranD. SwaminathanS. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B.Acta Crystallogr. D Biol. Crystallogr.200157111743174610.1107/S090744490101353111679763
    [Google Scholar]
  48. MontgomeryV.A. AhmedS.A. OlsonM.A. MizanurR.M. StaffordR.G. Roxas-DuncanV.I. SmithL.A. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors.Toxicon201598121910.1016/j.toxicon.2015.02.01225707753
    [Google Scholar]
  49. KumarG. AgarwalR. SwaminathanS. Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening.Chem. Commun. (Camb.)201248182412241410.1039/c2cc17158a22274537
    [Google Scholar]
  50. ZhouY. McGillickB.E. TengY.H.G. HaranahalliK. OjimaI. SwaminathanS. RizzoR.C. Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity.Bioorg. Med. Chem.201624204875488910.1016/j.bmc.2016.07.03127543389
    [Google Scholar]
  51. ChauhanR. Chauhan KushwahV. AgnihotriS. VimalM. SaxenaN. DhakedR.K. Designing, synthesis and evaluation of derived analogues of selected small molecule non-peptidic inhibitors against serotype BoNT/ F.Toxicon202322210698110.1016/j.toxicon.2022.10698136503896
    [Google Scholar]
  52. ThomasL. RareyM. Computational methods for biomolecular docking. Curr. Opinion in Struct.Bio.19966402406
    [Google Scholar]
  53. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217332545241028065445
Loading
/content/journals/jctv/10.2174/0126661217332545241028065445
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test