Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Human toxin poisoning from a variety of sources, including plants, animals, and chemical compounds, is a major concern for global health. Snake envenomation is a common and possibly fatal kind of poisoning among these. In addition to covering other well-known toxin exposures, this page offers a thorough study of human poisoning episodes with a special focus on snake envenomation. The study begins by outlining the geographic distribution of venomous snake species and their effects on various populations. It next discusses the occurrence of snakebite incidents worldwide. It explores the complex structure of snake venom and clarifies the many impacts of its constituent parts on human physiology.

The article investigates the corresponding clinical signs and medical care strategies by classifying venoms into hemotoxic, neurotoxic, and cytotoxic forms. The essay also looks into the socioeconomic effects of snakebite envenomation, highlighting how rural and low-income groups suffer disproportionately in areas with limited access to antivenom and medical care. It also emphasizes the efforts made by local programs and international health organizations to lessen the burden of morbidity and mortality associated with snakebite injuries. The article extends its focus beyond snake envenomation to include additional causes of human poisoning, such as plant toxins, chemical pollutants, and animal venoms. It provides prominent examples of poisoning occurrences produced by various compounds as well as an explanation of the mechanics of toxicity. The difficulties in diagnosing and treating such situations are also discussed, emphasizing the value of prompt and precise medical interventions.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217322059240917183927
2024-10-30
2025-10-01
Loading full text...

Full text loading...

References

  1. WeaverL.K. Clinical practice. Carbon monoxide poisoning.N. Engl. J. Med.2009360121217122510.1056/NEJMcp0808891 19297574
    [Google Scholar]
  2. UgesD. What is the definition of a poisoning?Elsevier20013033
    [Google Scholar]
  3. NepovimovaE. KucaK. The history of poisoning: from ancient times until modern ERA.Arch. Toxicol.2019931112410.1007/s00204‑018‑2290‑0 30132046
    [Google Scholar]
  4. SetubalR.B. FrasierC.L. MolinaJ. TorkeB.M. ForzzaR.C. StruweL. A toxic story: Phylogeny and classification of Strychnos L.(Loganiaceae).Syst. Bot.202146363965510.1600/036364421X16312067913444
    [Google Scholar]
  5. CharitosI.A. Gagliano-CandelaR. SantacroceL. Venoms and poisonings during the centuries: A narrative review.Endocr. Metab. Immune Disord. Drug Targets202222655865710.2174/1871530320666200904105816
    [Google Scholar]
  6. BurneyI. Poison, detection, and the Victorian imagination Poison, detection, and the Victorian imagination.Manchester University Press202110.7765/9781526158628
    [Google Scholar]
  7. GrabskaK. PilarskaI. Acute poisoning among children and adolescents: a narrative review.Medical Science Pulse20221621710.5604/01.3001.0015.9656
    [Google Scholar]
  8. PatelP. KomorowskiA.S. MackD.P. An allergist’s approach to food poisoning.Ann. Allergy Asthma Immunol.20221304444451
    [Google Scholar]
  9. SombatsawatE. BarrD.B. PanuwetP. RobsonM.G. SiriwongW. Pesticide-induced changes in cholinesterase activity and chronic kidney disease of unknown etiology among farmers in Nakhon Ratchasima, Thailand.Hum. Ecol. Risk Assess.20212782038205010.1080/10807039.2021.1944050
    [Google Scholar]
  10. KatrakS.M. Coma in the ICU: A Clinical Approach. In: Essentials of Critical Care Medicine for the Physician. jaypee digital 2022
    [Google Scholar]
  11. AL-Musawi M. Histopathological and biochemical comparative study of copper oxide nanoparticles and copper sulphate toxicity in male albino mice reproductive system.Int. J. Biomater.202220224877637
    [Google Scholar]
  12. LiontosA. SamanidouV. AthanasiouL. Filippas-NtekouanS. MilionisC. Acute Ethanol Intoxication: An Overlooked Cause of High Anion Gap Metabolic Acidosis With a Marked Increase in Serum Osmolal Gap.Cureus2023154e3729210.7759/cureus.37292 37168210
    [Google Scholar]
  13. NapagodaM. 9 Poisonous plants and their toxic metabolites.Chemistry of Natural Products: Phytochemistry and Pharmacognosy of Medicinal Plants20221217318810.1515/9783110595949‑009
    [Google Scholar]
  14. KhalilM. IqbalM. TuranV. Household chemicals and their impact.Environmental micropollutants.Elsevier202220123210.1016/B978‑0‑323‑90555‑8.00022‑2
    [Google Scholar]
  15. SmallE. In defence of the world’s most reviled vertebrate animals: part 1: ‘lower’ species (sharks, snakes, vultures, frogs & toads).Biodiversity (Nepean)2021223-415919310.1080/14888386.2021.1978108
    [Google Scholar]
  16. KumarS. KavithaT.K. AnguranaS.K. Kerosene, camphor, and naphthalene poisoning in children.Indian J. Crit. Care Med.201923Suppl. 4S278S281 32021004
    [Google Scholar]
  17. GuptaP. Concepts and applications in veterinary toxicology.Cham, SwitzerlandSpringer International Publishing201924224410.1007/978‑3‑030‑22250‑5
    [Google Scholar]
  18. Senji LaxmeR.R. SuranseV. SunagarK. Arthropod venoms: Biochemistry, ecology and evolution.Toxicon20191588410310.1016/j.toxicon.2018.11.433 30529476
    [Google Scholar]
  19. ThanacoodyR. AndersonM. Epidemiology of poisoning.Medicine (Abingdon)202048315315510.1016/j.mpmed.2019.12.001
    [Google Scholar]
  20. TitidezhV. ArefiM. TaghaddosinejadF. BehnoushB. Akbar pour S, Mahboobi M. Epidemiologic profile of deaths due to drug and chemical poisoning in patients referred to Baharloo Hospital of Tehran, 2011 to 2014.J. Forensic Leg. Med.201964313310.1016/j.jflm.2019.02.009 30927562
    [Google Scholar]
  21. AmirA. HaleemF. MahesarG. Epidemiological, poisoning characteristics and treatment outcomes of patients admitted to the National Poisoning Control Centre at Karachi, Pakistan: a six month analysis.Cureus20191111e622910.7759/cureus.6229 31890428
    [Google Scholar]
  22. AbbesM. MontanaM. CurtiC. VanelleP. Ricin poisoning: A review on contamination source, diagnosis, treatment, prevention and reporting of ricin poisoning.Toxicon2021195869210.1016/j.toxicon.2021.03.004 33711365
    [Google Scholar]
  23. MégarbaneB. OberlinM. AlvarezJ.C. Management of pharmaceutical and recreational drug poisoning.Ann. Intensive Care202010115710.1186/s13613‑020‑00762‑9 33226502
    [Google Scholar]
  24. RamtelR. AdhikariB. ShresthaM. HirachanN. PoddarE. ShresthaS. Diagnosis and management of nitrobenzene poisoning in a low-resource setting: A case report.Ann. Med. Surg. (Lond.)20228110455310.1016/j.amsu.2022.104553 36147189
    [Google Scholar]
  25. CappellettiS. PiacentinoD. FineschiV. FratiP. D’ErricoS. AromatarioM. Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature.Crit. Rev. Toxicol.201949432934110.1080/10408444.2019.1621262 31433682
    [Google Scholar]
  26. ZavaliyL.B. PetrikovS.S. SimonovaA.Y. Diagnosis and treatment of persons with acute thallium poisoning.Toxicol. Rep.2021827728110.1016/j.toxrep.2021.01.013 33552926
    [Google Scholar]
  27. MengW. SunM. XuQ. Development of a series of fluorescent probes for the early diagnostic imaging of sulfur mustard poisoning.ACS Sens.20194102794280110.1021/acssensors.9b01424 31549501
    [Google Scholar]
  28. GallagherN. EdwardsF.J. The diagnosis and management of toxic alcohol poisoning in the emergency department: a review article.Adv. J. Emerg. Med.201933e28 31410405
    [Google Scholar]
  29. ThanacoodyR. Principles of assessment and diagnosis of the poisoned patient.Medicine (Abingdon)202048315615910.1016/j.mpmed.2019.12.002
    [Google Scholar]
  30. ChibaT. OtakaS. IgetaR. BurnsM.M. IkedaS. ShigaT. Epidemiology and clinical outcomes of poisoning-induced cardiac arrest in Japan: Retrospective analysis of a nationwide registry.Resuscitation2022180525810.1016/j.resuscitation.2022.09.009 36185034
    [Google Scholar]
  31. FarkasA. KosticM. HuangC.C. GumminD. Poison center consultation reduces hospital length of stay.Clin. Toxicol. (Phila.)202260786386810.1080/15563650.2022.2039686 35261300
    [Google Scholar]
  32. FarnhamA. FuhrimannS. StaudacherP. Long-term neurological and psychological distress symptoms among smallholder farmers in Costa Rica with a history of acute pesticide poisoning.Int. J. Environ. Res. Public Health20211817902110.3390/ijerph18179021 34501611
    [Google Scholar]
  33. FarzaeiM.H. BayramiZ. FarzaeiF. Poisoning by medical plants.Arch. Iran Med.2020232117127 32061075
    [Google Scholar]
  34. LiuJ. SiZ. LiuJ. Clinical and imaging prognosis in patients with delayed encephalopathy after acute carbon monoxide poisoning.Behav. Neurol.20202020171936010.1155/2020/1719360
    [Google Scholar]
  35. PascaleA. LabordeA. Impact of pesticide exposure in childhood.Rev. Environ. Health202035322122710.1515/reveh‑2020‑0011 32598326
    [Google Scholar]
  36. WhiteheadLS BuchananSD Childhood lead poisoning: a perpetual environmental justice issue? J Public Health Manag Pract201925(1)(Suppl 1, Lead Poisoning Prevention) S115-20.10.1097/PHH.0000000000000891 30507780
  37. GamzeG. Evaluation of poisoning cases admitted to pediatric emergency department.Int. J. Pediatr. Adolesc. Med.20196310911410.1016/j.ijpam.2019.07.004 31700969
    [Google Scholar]
  38. TayE.Y. TanG.F. YeoA.W.C. ThamE.H. Intentional poisoning in pediatric patients: examining the risk factors.Pediatr. Emerg. Care20213712e1510e151410.1097/PEC.0000000000002101 32304525
    [Google Scholar]
  39. SahaM. MahamudS. RahulA.K. Current Scenario of Poisoning and Snake Bite Patients Admitted in Sylhet MAG Osmani Medical College Hospital.Bangladesh Journal of Medicine2023342133136
    [Google Scholar]
  40. HillmeisterP. PerssonA.B. Bradykinin-from snake poison to therapeutic options.Acta Physicologica20202283e13445
    [Google Scholar]
  41. SainiR. JainS.K. An epidemiological profile of fatal snake bite cases in south-east region of Rajasthan.J. Foren. Med. Toxico.2023401121510.5958/0974‑4568.2023.00004.2
    [Google Scholar]
  42. MoosB. WilliamsD. BolonI. MupfasoniD. Abela-RidderB. Ruiz de CastanedaR. A scoping review of current practices on community engagement in rural East Africa: Recommendations for snakebite envenoming.Toxicon X20211110007310.1016/j.toxcx.2021.100073 34381992
    [Google Scholar]
  43. PotetJ. BeranD. RayN. Access to antivenoms in the developing world: A multidisciplinary analysis.Toxicon X20211210008610.1016/j.toxcx.2021.100086 34786555
    [Google Scholar]
  44. AbdurrazaqI.S. SuyantoS. UtamaD.Q. Image-Based Classification of Snake Species Using Convolutional Neural Network. 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). 05-06 December 2019, Yogyakarta, Indonesia,201997102
    [Google Scholar]
  45. SilvaA.M. MendesV.K.G. MonteiroW.M. BernardeP.S. Non-venomous snakebites in the Western Brazilian Amazon.Rev. Soc. Bras. Med. Trop.201952e2019012010.1590/0037‑8682‑0120‑2019 31166491
    [Google Scholar]
  46. PaolinoG. Di NicolaM.R. AvellaI. MercuriS.R. Venomous Bites, Stings and Poisoning by European Vertebrates as an Overlooked and Emerging Medical Problem: Recognition, Clinical Aspects and Therapeutic Management.Life2023136122810.3390/life13061228 37374011
    [Google Scholar]
  47. LiuQ. XieX. WuY. High genetic divergence but low morphological differences in a keelback snake Rhabdophis subminiatus (Reptilia, Colubridae).J. Zool. Syst. Evol. Res.20215961371138110.1111/jzs.12484
    [Google Scholar]
  48. EngelbrechtH.M. BranchW.R. TolleyK.A. Snakes on an African plain: the radiation of Crotaphopeltis and Philothamnus into open habitat (Serpentes: Colubridae).PeerJ20219e1172810.7717/peerj.11728 34434643
    [Google Scholar]
  49. DasS. BreckoJ. PauwelsO.S.G. MeriläJ. Cranial osteology of Hypoptophis (Aparallactinae: Atractaspididae: Caenophidia), with a discussion on the evolution of its fossorial adaptations.J. Morphol.2022283451053810.1002/jmor.21457 35094424
    [Google Scholar]
  50. XuJ. GuoS. YinX. Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins.Acta Pharm. Sin. B20231352234224910.1016/j.apsb.2022.11.015 37250171
    [Google Scholar]
  51. OfforB.C. MullerB. PiaterL.A. A review of the proteomic profiling of african viperidae and elapidae snake venoms and their antivenom neutralisation.Toxins2022141172310.3390/toxins14110723 36355973
    [Google Scholar]
  52. Trevisan-SilvaD. de Alcantara FerreiraJ. MenezesM.C. The puzzle of proteolytic effects in hemorrhage induced by Viperidae snake venom metalloproteinases.Proteolytic Signaling in Health and Disease.Elsevier2022251283
    [Google Scholar]
  53. AlamM.J. MarufM.M.H. IqbalM.A. Evaluation of the properties of Bungarus caeruleus venom and checking the efficacy of antivenom used in Bangladesh for its bite treatment.Toxicon X20231710014910.1016/j.toxcx.2023.100149 36654657
    [Google Scholar]
  54. VenkatesanK. SivadasanD. AlghazwaniY. Potential of seaweed biomass: snake venom detoxifying action of brown seaweed Padina boergesenii against Naja naja venom.Biomass Convers. Biorefin.2023•••11410.1007/s13399‑023‑03922‑6
    [Google Scholar]
  55. Nasri NasrabadiN. Mohammadpour DounighiN. AhmadinejadM. Isolation of the anticoagulant and procoagulant fractions of the venom of Iranian endemic Echis carinatus.Iran. J. Pharm. Res.2022211e12724010.5812/ijpr‑127240 36942067
    [Google Scholar]
  56. YeeK.T. MacranderJ. VasievaO. RojnuckarinP. Exploring Toxin Genes of Myanmar Russell’s Viper, Daboia siamensis, through] De Novo Venom Gland Transcriptomics.Toxins202315530910.3390/toxins15050309 37235344
    [Google Scholar]
  57. AdisakwattanaP. ChanhomeL. ChaiyabutrN. PhuphisutO. ReamtongO. ThawornkunoC. Venom-gland transcriptomics of the Malayan pit viper (Calloselasma rhodostoma) for identification, classification, and characterization of venom proteins.Heliyon202395e1547610.1016/j.heliyon.2023.e15476 37153433
    [Google Scholar]
  58. BhosaleH. GowandeG. PatelH. Systematics of Trimeresurus popeiorum Smith, 1937 with a revised molecular phylogeny of Asian pitvipers of the genus Trimeresurus Lacépède, 1804 sensu lato.Evol. Syst.202379110410.3897/evolsyst.7.97026
    [Google Scholar]
  59. AnitaS. SadjuriA.R. RahmahL. Venom composition of Trimeresurus albolabris, T. insularis, T. puniceus and T. purpureomaculatus from Indonesia.J. Venom. Anim. Toxins Incl. Trop. Dis.202228e2021010310.1590/1678‑9199‑jvatitd‑2021‑0103 35875602
    [Google Scholar]
  60. MiltonN. The secret life of the adder: The vanishing viper.Herpetol. Bull.20221624748
    [Google Scholar]
  61. HuynhT.M. SilvaA. IsbisterG.K. HodgsonW.C. Isolation and pharmacological characterization of α-elapitoxin-Oh3a, a long-chain post-synaptic neurotoxin from King Cobra (Ophiophagus hannah) venom.Front. Pharmacol.20221381506910.3389/fphar.2022.815069 35341214
    [Google Scholar]
  62. MallikA.K. AchyuthanN.S. GaneshS.R. PalS.P. VijayakumarS.P. ShankerK. Discovery of a deeply divergent new lineage of vine snake (Colubridae: Ahaetuliinae: Proahaetulla gen. nov.) from the southern Western Ghats of Peninsular India with a revised key for Ahaetuliinae.PLoS One2019147e021885110.1371/journal.pone.0218851 31314800
    [Google Scholar]
  63. DashevskyD. RokytaD. FrankN. NouwensA. FryB.G. Electric blue: molecular evolution of three-finger toxins in the long-glanded coral snake species Calliophis bivirgatus.Toxins202113212410.3390/toxins13020124 33567660
    [Google Scholar]
  64. SalunkheR.V. Snakes of Indapur: Diversity and Awareness.Bhumi Publishing: Bhumi Publishing2023
    [Google Scholar]
  65. SmartU. IngrasciM.J. SarkerG.C. A comprehensive appraisal of evolutionary diversity in venomous Asian coralsnakes of the genus Sinomicrurus (Serpentes: Elapidae) using Bayesian coalescent inference and supervised machine learning.J. Zool. Syst. Evol. Res.20215982212227710.1111/jzs.12547
    [Google Scholar]
  66. ZhongJ. GuoK. LiaoZ.L. DuY. LinC-X. JiX. Comparative analysis of the skin microbiota between two sea snakes, Hydrophis cyanocinctus and Hydrophis curtus, with versus without skin ulcer.Coral Reefs202342374375310.1007/s00338‑023‑02386‑4
    [Google Scholar]
  67. BessesenB.L. Garrido-CayulC. González-SuárezM. Habitat suitability and area of occupancy defined for rare New World sea snake.Conserv. Sci. Pract.202351e1286510.1111/csp2.12865
    [Google Scholar]
  68. Rezaei OrimiJ. EskandarzadehN. Amrollahi-SharifabadiM. MiriV. AghabeiglooeiZ. RezghiM. Analyzing the biological traits of snakes in Avicenna’s Canon of medicine and making a comparison with contemporary serpentology.Toxicon202323110719810.1016/j.toxicon.2023.107198 37331525
    [Google Scholar]
  69. HuF. WangP. LiY. Watch out Venomous Snake Species: A solution to snake CLEF2023 arXiv:2307097482023
  70. TadokoroT. ModahlC.M. MaenakaK. Aoki-ShioiN. Cysteine-rich secretory proteins (CRISPs) from venomous snakes: An overview of the functional diversity in a large and underappreciated superfamily.Toxins202012317510.3390/toxins12030175 32178374
    [Google Scholar]
  71. JagpalP.S. WilliamsH.A. EddlestonM. Bites by exotic snakes reported to the UK National Poisons Information Service 2009–2020.Clin. Toxicol. (Phila.)20226091044105010.1080/15563650.2022.2077748 35853475
    [Google Scholar]
  72. MohalikR. SamalA. SahuB. Rescue and Documentation of an Albino juvenile Common Cobra,Naja naja (Linnaeus 1758) from Bhawanipatna, Kalahandi, Odisha.Entomol. Ornithol. Herpetol.175812301
    [Google Scholar]
  73. MahapatraA.D. SantraV. JanaS. GhoraiS.K. Cobras in peril: Reporting the death of two monocled cobra (Naja kaouthia) (Squamata: Elapidae) due to consumption of anthropogenic plastic debris.J. Asia-Pac. Biodivers.202316225526010.1016/j.japb.2023.01.008
    [Google Scholar]
  74. ChongH.P. TanK.Y. LiuB.S. SungW.C. TanC.H. Cytotoxicity of venoms and cytotoxins from Asiatic cobras (Naja kaouthia, Naja sumatrana, Naja atra) and neutralization by antivenoms from Thailand, Vietnam, and Taiwan.Toxins202214533410.3390/toxins14050334 35622581
    [Google Scholar]
  75. TansuwannaratP. TongpooA. PhongsawadS. SriaphaC. WananukulW. TrakulsrichaiS. A retrospective cohort study of cobra envenomation: clinical characteristics, treatments, and outcomes.Toxins202315746810.3390/toxins15070468 37505737
    [Google Scholar]
  76. HiuJ.J. YapM.K.K. The myth of cobra venom cytotoxin: More than just direct cytolytic actions.Toxicon X20221410012310.1016/j.toxcx.2022.100123 35434602
    [Google Scholar]
  77. OngH.L. TanC.H. LeeL.P. KhorS.M. TanK.Y. An immunodetection assay developed using cobra cytotoxin-specific antibodies: Potential diagnostics for cobra envenoming.Toxicon202221615716810.1016/j.toxicon.2022.07.010 35868411
    [Google Scholar]
  78. Abu BakerM.A. Al-SarairehM. AmrZ. AmrS.S. WarrellD.A. Snakebites in Jordan: A clinical and epidemiological study.Toxicon2022208183010.1016/j.toxicon.2022.01.005 35026216
    [Google Scholar]
  79. TanC.H. BourgesA. TanK.Y. King Cobra and snakebite envenomation: on the natural history, human-snake relationship and medical importance of Ophiophagus hannah.J. Venom. Anim. Toxins Incl. Trop. Dis.202127e2021005110.1590/1678‑9199‑jvatitd‑2021‑0051 35069710
    [Google Scholar]
  80. Singkham-InU. ThaveekarnW. NoiphromJ. Hydrogen peroxide from l-amino acid oxidase of king cobra (Ophiophagus hannah) venom attenuates Pseudomonas biofilms.Sci. Rep.20231311130410.1038/s41598‑023‑37914‑3 37438396
    [Google Scholar]
  81. HuynhT.M. HodgsonW.C. IsbisterG.K. SilvaA. The Effect of Australian and Asian Commercial Antivenoms in Reversing the Post-Synaptic Neurotoxicity of O. hannah, N. naja and N. kaouthia Venoms In vitro.Toxins202214427710.3390/toxins14040277 35448886
    [Google Scholar]
  82. ChandrasekaraU. HarrisR.J. FryB.G. The target selects the toxin: specific amino acids in snake-prey nicotinic acetylcholine receptors that are selectively bound by king cobra venoms.Toxins202214852810.3390/toxins14080528 36006190
    [Google Scholar]
  83. KhourchaS. HilalI. ElbejjajI. Insight into the Toxicological and Pathophysiological Effects of Moroccan Vipers’ Venom: Assessing the Efficacy of Commercial Antivenom for Neutralization.Trop. Med. Infect. Dis.20238630210.3390/tropicalmed8060302 37368720
    [Google Scholar]
  84. BholaK. MasheleS. MoodleyY. Ultrasound features of Cytotoxic venomous snake bite and implications for surgical management–A systematic review.Student’s Journal of Health Research Africa202231288
    [Google Scholar]
  85. CostaM.T. da Silva GoulartA. SalgueiroA.C.F. da RosaH.S. PerazzoG.X. FolmerV. Cytotoxicity and inflammation induced by Philodryas patagoniensis venom.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202225710935610.1016/j.cbpc.2022.109356 35490925
    [Google Scholar]
  86. Op den BrouwB. Fernandez-RojoM.A. CharltonT. FryB.G. IkonomopoulouM.P. Malaysian and Chinese King Cobra Venom Cytotoxicity in Melanoma and Neonatal Foreskin Fibroblasts Is Mediated by Age and Geography.Toxins202315954910.3390/toxins15090549 37755975
    [Google Scholar]
  87. SiH. YinC. WangW. Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport.Microcirculation2023302-3e1277510.1111/micc.12775 35689804
    [Google Scholar]
  88. PathaniaM. RijalP. SinghA.P. PanwarP. KantR. Prolonged asymptomatic venom induced consumption coagulopathy: Caused by hemotoxic snake bite.J. Family Med. Prim. Care202211117448745110.4103/jfmpc.jfmpc_1126_22 36993133
    [Google Scholar]
  89. WedasinghaS. SilvaA. SiribaddanaS. SeneviratneK. IsbisterG.K. Comparison of bedside clotting tests for detecting venom-induced consumption coagulopathy following Sri Lankan viper envenoming.Clin. Toxicol. (Phila.)202260121328133510.1080/15563650.2022.2128816 36322690
    [Google Scholar]
  90. YousafM. KhanQ.A. AnthonyM.R. Snakebite Induced Cerebral Venous Sinus Thrombosis: A Case Report.Clin. Med. Insights Case Rep.2023161179547623116575010.1177/11795476231165750 37033678
    [Google Scholar]
  91. GhoshR. León-RuizM. RoyD. NagaD. SardarS.S. Benito-LeónJ. Cerebral venous sinus thrombosis following Russell’s viper (Daboia russelii) envenomation: A case report and review of the literature.Toxicon202221881210.1016/j.toxicon.2022.08.014 36041514
    [Google Scholar]
  92. Dobaja BorakM. GrencD. ReberšekK. Reversible and transient thrombocytopenia of functional platelets induced by nose-horned viper venom.Thromb. Res.202322915215410.1016/j.thromres.2023.07.005 37454466
    [Google Scholar]
  93. ZhangC. ZhangZ. LiangE. Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia.Molecules20222722777910.3390/molecules27227779 36431880
    [Google Scholar]
  94. TrautmanW. PizonA. Severe, persistent thrombocytopenia in Crotalus horridus envenomation despite antivenom: A retrospective review.Toxicon202322410702910.1016/j.toxicon.2023.107029 36682501
    [Google Scholar]
  95. LohakareT. KurianB. MauryaA. WanjariM.B. MeshramK.M. A Life-Threatening Incidence of Neurotoxic Indian Krait Snake Bite: A Case Report.Cureus2022148e2771910.7759/cureus.27719 36081963
    [Google Scholar]
  96. TanC.H. LingamT.M.C. TanK.Y. Varespladib (LY315920) rescued mice from fatal neurotoxicity caused by venoms of five major Asiatic kraits (Bungarus spp.) in an experimental envenoming and rescue model.Acta Trop.202222710628910.1016/j.actatropica.2021.106289 34929179
    [Google Scholar]
  97. SuhitaR. BegumI. RashidM. Systematic review and meta-analysis of global prevalence of neurotoxic and hemotoxic snakebite envenomation.East. Mediterr. Health J.2022281290991610.26719/emhj.22.090 36573572
    [Google Scholar]
  98. AbouhatabH. kandeel. Evaluation of Snake Bite Poisoned Cases “Clinical and Biochemical Predictors”.Egyptian Journal of Forensic Sciences and Applied Toxicology2023233556610.21608/ejfsat.2023.218081.1292
    [Google Scholar]
  99. PangamD. JaiswalV. DongreP. Inhibition of Russell’s Viper Venom using Silver Nanoparticle-Bovine Serum Albumin-Curcumin Conjugates.Indian J. Pharm. Sci.2022844
    [Google Scholar]
  100. AjisebiolaB.S. FawoleA.B. AdeyiO.E. AdeyiA.O. An in vivo assessment of inflammatory and oxidative stress responses in Echis ocellatus-venom induced cardiotoxicity.Medicine in Omics20225-610001710.1016/j.meomic.2022.100017
    [Google Scholar]
  101. ChaisakulJ KhimmaktongW NuanyaemN. Determination of Nephrotoxicity, Hepatotoxicity and Cardiovascular Disturbances following Malayan Pit Viper (Calloselasma rhodostoma) Envenoming: Histopathological study and The Protective Effect of Hemato Polyvalent Snake Antivenom from Thailand. 2022. Preprint 11 Mar,
  102. DasK. DasS. MohakudN.K. PradhanS.K. SahuS.K. Risk factors and outcome of acute kidney injury in children with snake envenomation.Trop. Doct.202353444144310.1177/00494755231192684 37545383
    [Google Scholar]
  103. KoshyP. ChavanG. GadkariC. DubeyS. When Venom Meets the Heart: A Rare Case of Scorpion Sting-Induced Acute Myocardial Infarction.Cureus2023159e4488610.7759/cureus.44886 37814749
    [Google Scholar]
  104. ShenoyS. BockenhauerD. Challenges in using fractional excretion of sodium in the assessment of salt poisoning.Acta Paediatr.2024113115040 36853022
    [Google Scholar]
  105. WendtS LübbertC BegemannK PrasaD FrankeH. Poisoning by Plants.Dtsch Arztebl Int 2022; 119(Forthcoming): 317-24. 35140011
    [Google Scholar]
  106. LiY. JinQ. LiZ. ChenM. XieL. Misdiagnosed centipede and scorpion poisoning characterized by delayed hypersensitivity reaction: A case report.Medicine (Baltimore)202210151e3228810.1097/MD.0000000000032288 36595768
    [Google Scholar]
  107. SafaeeM. MalekzadehM. MotamediN. SayadishahrakiM. Eizadi-MoodN. Gastrointestinal Manifestations of Lead Poisoning: A Brief Report.Iran. J. Med. Sci.2023486600605 38094284
    [Google Scholar]
  108. SeifertS.A. ArmitageJ.O. SanchezE.E. Snake Envenomation.N. Engl. J. Med.20223861687810.1056/NEJMra2105228 34986287
    [Google Scholar]
  109. DehghaniR. MonzaviS.M. MehrpourO. Medically important snakes and snakebite envenoming in Iran.Toxicon202323010714910.1016/j.toxicon.2023.107149 37187227
    [Google Scholar]
  110. ZdenekC.N. ChowdhuryA. HawG.Y.H. Taxon-selective venom variation in adult and neonate Daboia russelii (Russell’s Viper), and antivenom efficacy.Toxicon2022205111910.1016/j.toxicon.2021.11.004 34752826
    [Google Scholar]
  111. The role of the nurse in the face of snakebite victims in pre-hospital and intra-hospital accidents. 2023. Available from: https://sevenpublicacoes.com.br/editora/article/view/2279(accessed on 20-8-2024)
  112. PandeyD.P. ThapaN.B. Analysis of News Media-Reported Snakebite Envenoming in Nepal during 2010–2022.PLoS Negl. Trop. Dis.2023178e001157210.1371/journal.pntd.0011572 37639403
    [Google Scholar]
  113. OrganizationW.H. Regional Action Plan for prevention and control of snakebite envenoming in the South-.East Asia (Piscataway)2022•••20222030
    [Google Scholar]
  114. MargonoF. OutwaterA.H. Lowery WilsonM. HowellK.M. BärnighausenT. Snakebite treatment in Tanzania: identifying gaps in community practices and hospital resources.Int. J. Environ. Res. Public Health2022198470110.3390/ijerph19084701 35457571
    [Google Scholar]
  115. FarooqH. BeroC. GuilengueY. Snakebite incidence in rural sub-Saharan Africa might be severely underestimated.Toxicon202221910693210.1016/j.toxicon.2022.106932 36181779
    [Google Scholar]
  116. MurtaF. StrandE. de FariasA.S. “Two Cultures in Favor of a Dying Patient”: Experiences of Health Care Professionals Providing Snakebite Care to Indigenous Peoples in the Brazilian Amazon.Toxins202315319410.3390/toxins15030194 36977085
    [Google Scholar]
  117. ZengZ.Y. HuangP.Y. DuJ.Y. Effect of Agkistrodon halys antivenom in patients bit by green pit viper and the prognostic role of the disease – a retrospective cohort study.Clin. Toxicol. (Phila.)202260780881710.1080/15563650.2022.2041200 35225104
    [Google Scholar]
  118. WilsonB.Z. BahadirA. AndrewsM. Initial Experience with F(ab’)2 Antivenom Compared with Fab Antivenom for Rattlesnake Envenomations Reported to a single poison center during 2019.Toxicon2022209101710.1016/j.toxicon.2022.01.007 35085602
    [Google Scholar]
  119. WHO Target product profiles for animal plasma-derived antivenoms: antivenoms for treatment of snakebite envenoming in sub-Saharan Africa.Available from2023 https://www.who.int/teams/control-of-neglected-tropical-diseases/snakebite-envenoming/target-product-profiles(accessed on 20-8-2024)
    [Google Scholar]
  120. BrandehoffN. DaltonA. DaughertyC. DartR.C. MonteA.A. Total CroFab and Anavip Antivenom Vial Administration in US Rattlesnake Envenomations: 2019–2021.J. Med. Toxicol.202319324825410.1007/s13181‑023‑00941‑7 37115482
    [Google Scholar]
  121. NeumannN.R. du PlessisA. van HovingD.J. Antivenom supply and demand: An analysis of antivenom availability and utilization in South Africa.Afr. J. Emerg. Med.202313424524910.1016/j.afjem.2023.08.002 37745277
    [Google Scholar]
  122. NascimentoT.P. Vilhena Silva-NetoA. Baia-da-SilvaD.C. Pregnancy outcomes after snakebite envenomations: A retrospective cohort in the Brazilian Amazonia.PLoS Negl. Trop. Dis.20221612e001096310.1371/journal.pntd.0010963 36469516
    [Google Scholar]
  123. Ramirez-CruzM.P. RayburnW.F. SeifertS.A. Envenomations and antivenom during pregnancy.Clinical Pharmacology During Pregnancy.Elsevier202238940810.1016/B978‑0‑12‑818902‑3.00011‑7
    [Google Scholar]
  124. WeinsteinS.A. WarrellD.A. KeylerD.E. Venomous” Bites from” Non-Venomous.Snakes.Elsevier Inc2022
    [Google Scholar]
  125. PotetJ. SinghS. RitmeijerK. Snakebite envenoming at MSF: A decade of clinical challenges and antivenom access issues.Toxicon X20231710014610.1016/j.toxcx.2022.100146 36619819
    [Google Scholar]
  126. GopalG. MuralidarS. PrakashD. The concept of Big Four: Road map from snakebite epidemiology to antivenom efficacy.Int. J. Biol. Macromol.2023242Pt 112477110.1016/j.ijbiomac.2023.124771 37169043
    [Google Scholar]
  127. DalhatM.M. PotetJ. MohammedA. ChotunN. TesfahuneiH.A. HabibA.G. Availability, accessibility and use of antivenom for snakebite envenomation in Africa with proposed strategies to overcome the limitations.Toxicon X20231810015210.1016/j.toxcx.2023.100152 36936749
    [Google Scholar]
  128. BassierI. The diet and feeding ecology of the brown house snake, Boaedon capensis. Master's thesis, University of the Western Cape,2022
    [Google Scholar]
  129. TrautmanW.J. AhmedF. BartonD.J. Safe administration of Crotalidae equine immune F (ab’) 2 antivenom in a patient who suffered anaphylaxis from Crotalidae polyvalent immune Fab antivenom.Am. J. Emerg. Med.202372221
    [Google Scholar]
  130. NorouznejadN. ZolfagharianH. BabaieM. GhobehM. Purification of Therapeutic Serums of Snake Anti-Venom with Caprylic Acid.J. Pharmacopuncture202225211412010.3831/KPI.2022.25.2.114 35837146
    [Google Scholar]
  131. Carrasco-HarrisM.F. BowmanD. ReichlingS. ColeJ.A. Spatial ecology of copperhead snakes (Agkistrodon contortrix) in response to urban park trails.J. Urban Econ.202061juaa00710.1093/jue/juaa007
    [Google Scholar]
  132. SánchezA. SeguraÁ. PlaD. Comparative venomics and preclinical efficacy evaluation of a monospecific Hemachatus antivenom towards sub-Saharan Africa cobra venoms.J. Proteomics202124010419610.1016/j.jprot.2021.104196 33775842
    [Google Scholar]
  133. YehH. GaoS.Y. LinC.C. Wound infections from Taiwan Cobra (Naja atra) bites: determining bacteriology, antibiotic susceptibility, and the use of antibiotics-a cobra BITE study.Toxins202113318310.3390/toxins13030183 33801318
    [Google Scholar]
  134. Development of in vitro assays for hematotoxic activity of the Russell’s viper Daboia siamensis venom. SittishevaparkP KitanaJ SukrongS AIP Conference ProceedingsAIP Publishing2019
    [Google Scholar]
  135. LarréchéS. ChippauxJ.P. ChevillardL. Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders.Int. J. Mol. Sci.20212217964310.3390/ijms22179643 34502548
    [Google Scholar]
  136. GhezellouP. Pharmacological characterisation of Pseudocerastes and Eristicophis viper venoms reveal anticancer (Melanoma) properties and a potentially novel mode of fibrinogenolysis.Int. J. Mol. Sci.202122136869
    [Google Scholar]
  137. CalderonB.H. CoronelY.V.O. ReyC.O.A. Development of nanobodies against hemorrhagic and myotoxic components of Bothrops atrox snake venom.Front. Immunol.20201165510.3389/fimmu.2020.00655 32457735
    [Google Scholar]
  138. SitprijaV. SitprijaS. Marine toxins and nephrotoxicity:Mechanism of injury.Toxicon2019161444910.1016/j.toxicon.2019.02.012 30826470
    [Google Scholar]
  139. OsipovA. UtkinY. What Are the Neurotoxins in Hemotoxic Snake Venoms?Int. J. Mol. Sci.2023243291910.3390/ijms24032919 36769242
    [Google Scholar]
  140. ChorariaA. SomasundaramR. JananiS. RajendranS. OukkacheN. MichaelA. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review.Toxin Rev.20224131018102910.1080/15569543.2021.1942063
    [Google Scholar]
  141. KaulS. Sai KeerthanaL. KumarP. Cytotoxin antibody-based colourimetric sensor for field-level differential detection of elapid among big four snake venom.PLoS Negl. Trop. Dis.20211510e000984110.1371/journal.pntd.0009841 34634067
    [Google Scholar]
  142. Aoki-ShioiN. KohC.Y. KiniR.M. Natural inhibitors of snake venom metalloproteinases.Aust. J. Chem.202073427728610.1071/CH19414
    [Google Scholar]
  143. GutiérrezJ.M. AlbulescuL.O. ClareR.H. The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming.Toxins202113745110.3390/toxins13070451 34209691
    [Google Scholar]
  144. BabenkoV.V. ZiganshinR.H. WeiseC. Novel bradykinin-potentiating peptides and three-finger toxins from viper venom: Combined NGS venom gland transcriptomics and quantitative venom proteomics of the Azemiops feae viper.Biomedicines20208824910.3390/biomedicines8080249 32731454
    [Google Scholar]
  145. LiuC.C. WuC.J. HsiaoY.C. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A2 activity with varespladib.J. Proteomics202123410408410.1016/j.jprot.2020.104084 33359941
    [Google Scholar]
  146. TanjoniI. ButeraD. BentoL. Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies.Toxicon200342780180810.1016/j.toxicon.2003.10.010 14757212
    [Google Scholar]
  147. O’BrienJ. LeeS.H. GutiérrezJ.M. SheaK.J. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis.PLoS Negl. Trop. Dis.20181210e000673610.1371/journal.pntd.0006736 30286075
    [Google Scholar]
  148. GomesA. GhoshS. SenguptaJ. Nanotechnology in Venom Research: Recent Trends and Its Application.Nanotechnology for Biomedical Applications.Springer2018
    [Google Scholar]
  149. JoglekarA.V. DehariD. AnjumM.M. Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations.Fut J Pharmaceut Sci2022813410.1186/s43094‑022‑00415‑7
    [Google Scholar]
  150. KiniR.M. SidhuS.S. LaustsenA.H. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-generation treatments for snakebite victims.Toxins2018101253410.3390/toxins10120534 30551565
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217322059240917183927
Loading
/content/journals/jctv/10.2174/0126661217322059240917183927
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antivenoms; hospital care; mortality; Poisoning; prehospital care; snake bite poisoning
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test