Skip to content
2000
Volume 5, Issue 1
  • ISSN: 3050-8819
  • E-ISSN: 3050-8827

Abstract

Introduction

In the present work, FeO-Nd-ZnO (FeO = 5, 10, 15 wt. %) have been synthesised and investigated for their application as photocatalysts for degradation of Rhodamine 6G (R6G) under UV light.

Methods

The data acquired from the different analytical techniques showed the successful assembly of the desired photocatalysts. Morphology of the bare components and nanocomposites are observed to be spherical. The band gap energy of nanocomposites was found to be higher (3.29 to 3.24 eV) than bare components. Synergetic effects of the individual components enabled efficacious photocatalytic performances of the nanocomposites.

Results and Discussion

The photocatalyst 5F-5NZ exhibited photodegradation up to 96.52% within 180 min. The nanocomposites retained the photocatalytic activity even though compounded with FeO in varied amounts.

Conclusion

The recycle experiments revealed that the photocatalytic activity was conserved which validated the stable and efficient magnetic separable photocatalysts.

Loading

Article metrics loading...

/content/journals/jbcp/10.2174/012665976X355813250331174735
2025-04-22
2025-10-01
Loading full text...

Full text loading...

References

  1. RazaW. FaisalS.M. OwaisM. BahnemannD. MuneerM. Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity.RSC Adv2016682783357835010.1039/C6RA06774C
    [Google Scholar]
  2. AhlawatR. SrivastavaV.C. MallI.D. SinhaS. Investigation of the electrocoagulation treatment of cotton blue dye solution using aluminium electrodes.Clean20083610-1186386910.1002/clen.200800019
    [Google Scholar]
  3. GuoJ.F. MaB. YinA. FanK. DaiW.L. Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4-SiO2 magnetic nanoparticle under visible light irradiation.Appl. Catal. B20111013-458058610.1016/j.apcatb.2010.10.032
    [Google Scholar]
  4. RezaeeA. MasoumbeigiH. SoltaniR.D.C. KhataeeA.R. HashemiyanS. Corrigendum to Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method.Desalination Water Treat.2012471-335335310.1080/19443994.2012.710486
    [Google Scholar]
  5. GaoJ. GuH. XuB. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications.Acc. Chem. Res.20094281097110710.1021/ar900002619476332
    [Google Scholar]
  6. RojviroonT. LaobutheeA. SirivithayapakornS. Photocatalytic activity of toluene under UV-LED Light with TiO2 thin films.Int. J. Photoenergy201220121810.1155/2012/898464
    [Google Scholar]
  7. JoshuaJ. Samuel; and F K Yam. Photocatalytic degradation of methylene blue under visible light by dye sensitized titania.Mater. Res. Express2020701505110.1088/2053‑1591/ab6409
    [Google Scholar]
  8. LiY. WangW. WangF. DiL. YangS. ZhuS. YaoY. MaC. DaiB. YuF. Enhanced photocatalytic degradation of organic dyes via defect-rich TiO2 prepared by dielectric barrier discharge plasma.Nanomaterials 2019972021410.3390/nano9050720
    [Google Scholar]
  9. ThiL. ThaoS. TrungT. DangT. KhanitchaidechaW. Photocatalytic degradation of organic dye under UV‐A irradiation using TiO2‐vetiver multifunctional nano particles.Materials 201710122112
    [Google Scholar]
  10. NakataK. FujishimaA. TiO2 photocatalysis: Design and applications.J. Photochem. Photobiol. Photochem. Rev.201213316918910.1016/j.jphotochemrev.2012.06.001
    [Google Scholar]
  11. MengS. LiD. ZnO photonic crystals with enhanced photocatalytic activity and photostability.J. Mater. Chem. A Mater. Energy Sustain.201312744274710.1039/c2ta01327d
    [Google Scholar]
  12. TaylorP. LamS. SinJ. AbdullahA.Z. MohamedA.R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review.Desalination Water Treat.201220124113116910.1080/19443994.2012.664698
    [Google Scholar]
  13. BaruahS. PalS.K. DuttaJ. Nanostructured zinc oxide for water treatment.Nanosci. Nanotechnol. Asia2012229010210.2174/2210681211202020090
    [Google Scholar]
  14. KhairolN.F. SapaweN. DanishM. Effective photocatalytic removal of different dye stuffs using ZnO/CuO-incorporated onto eggshell templating.Mater. Today Proc.2019191255126010.1016/j.matpr.2019.11.130
    [Google Scholar]
  15. HeW. KimH.K. WamerW.G. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.J. Am. Chem. Soc.2014136275075710.1021/ja410800y24354568
    [Google Scholar]
  16. AzarangabM. ShuhaimiaA. YousefiR. One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of methylene blue.RSC Advances201552188821896
    [Google Scholar]
  17. ZhengX. ZhangZ. MengS. WangY. LiD. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting.Chem. Eng. J.202039312467610.1016/j.cej.2020.124676
    [Google Scholar]
  18. LinleyS. LeshukT. GuF.X. Magnetically separable water treatment technologies and their role in future advanced water treatment: A patent review. Clean Soil. Air. Water2013411211521156
    [Google Scholar]
  19. FengX. GuoH. PatelK. ZhouH. LouX. High performance, recoverable Fe3O4ZnO nanoparticles for enhanced photocatalytic degradation of phenol.Chem. Eng. J.201424432733410.1016/j.cej.2014.01.075
    [Google Scholar]
  20. WuK. JingC. ZhangJ. LiuT. YangS. WangW. Magnetic Fe3O4-CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic(III/V) from water.Appl. Surf. Sci.20194661374675610.1016/j.apsusc.2018.10.091
    [Google Scholar]
  21. HalfadjiA. NaousM. KharroubiK. AoudiaH. Facile prepared Fe3O4 nanoparticles as a nano-catalyst on photofenton process to remediation of methylene blue dye from water: Characterisation and optimization.Glob. NEST J.202426116
    [Google Scholar]
  22. ShyleshS. SchünemannV. ThielW.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis.Angew. Chem. Int. Ed.201049203428345910.1002/anie.200905684
    [Google Scholar]
  23. Al-FarrajE.S. AbdelrahmanE.A. Efficient photocatalytic degradation of congo red dye using facilely synthesized and characterized MgAl2O4 nanoparticles.ACS Omega2024944870488010.1021/acsomega.3c0848538313534
    [Google Scholar]
  24. SzostakO.D.K. BanachM.K.M. Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes.Int. J. Environ. Sci. Technol.202118356157410.1007/s13762‑020‑02852‑4
    [Google Scholar]
  25. BahariA. RoeinfardM. RamzannezhadA. Characteristics of Fe3O4/ZnO nanocomposite as a possible gate dielectric of nanoscale transistors in the field of cyborg.J. Mater. Sci. Mater. Electron.20162799363936910.1007/s10854‑016‑4978‑3
    [Google Scholar]
  26. MadimaN. KefeniK.K. MishraS.B. MishraA.K. KuvaregaA.T. Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye.Inorg. Chem. Commun.202214510996610.1016/j.inoche.2022.109966
    [Google Scholar]
  27. NoraI.M.R. LeeK.M. ChinW.L. OngB.H. Recoverability of Fe3O4/TiO2 nanocatalyst in methyl orange degradation.Mater. Res. Express20196711310.1088/2053‑1591/ab176e
    [Google Scholar]
  28. ChalasaniR. VasudevanS. Cyclodextrin-functionalized Fe3O4-TiO2: Reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies.ACS Nano2013754093410410.1021/nn400287k23600646
    [Google Scholar]
  29. YanW. FanH. YangC. Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure.Mater. Lett.201165111595159710.1016/j.matlet.2011.03.026
    [Google Scholar]
  30. SheikhmohammadiA. AsgariE. NourmoradiH. FazliM.M. YeganehM. Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms.J. Environ. Chem. Eng.20219510584410.1016/j.jece.2021.105844
    [Google Scholar]
  31. ChangJ. ZhangQ. LiuY. ShiY. QinZ. Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol.J. Mater. Sci. Mater. Electron.201829108258826610.1007/s10854‑018‑8832‑7
    [Google Scholar]
  32. SalamatS. YounesiH. BahramifarN. Synthesis of magnetic core–shell Fe3O4-TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater.RSC Adv2017731193911940510.1039/C7RA01238A
    [Google Scholar]
  33. BokareA. SinghH. PaiM. NairR. SabharwalS. AthawaleA.A. Hydrothermal synthesis of Ag-TiO2–Fe3O4 nanocomposites using sonochemically activated precursors: Magnetic, photocatalytic and antibacterial properties.Mater. Res. Express20141404611110.1088/2053‑1591/1/4/046111
    [Google Scholar]
  34. SatpalS.B. AthawaleA.A. Synthesis of ZnO and Nd doped ZnO polyscales for removal of rhodamine 6G dye under UV light irradiation.Mater. Res. Express20185808550110.1088/2053‑1591/aad26c
    [Google Scholar]
  35. RathodP.B. PandeyA.K. MeenaS.S. AthawaleA.A. Quaternary ammonium bearing hyper-crosslinked polymer encapsulation on Fe3O4 nanoparticles.RSC Advances2016626213172132510.1039/C6RA01543C
    [Google Scholar]
  36. KandpalN.D. SahN. LoshaliR. JoshiR. PrasadJ. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles.J. Sci. Ind. Res.2014738790
    [Google Scholar]
  37. XuN. ShiZ. FanY. DongJ. ShiJ. HuM.Z.C. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions.Ind. Eng. Chem. Res.199938237337910.1021/ie980378u
    [Google Scholar]
  38. NalbandianL. PatrikiadouE. ZaspalisV. PatrikidouA. HatzidakiE. PapandreouN. Magnetic nanoparticles in medical diagnostic applications: Synthesis, characterization and proteins conjugation.Curr. Nanosci.201512445546810.2174/1573413712666151210230002
    [Google Scholar]
  39. WinatapuraD.S. WardiyatiS. FisliA. Preparation of magnetic-ZnO nanocomposite by high energy milling method for methyl orangedegradation.J. Kim. Dan. Kema.20163828592
    [Google Scholar]
  40. HamidM. RiannaM. RangkutiW.R. SembiringT. SebayangP. Study and characterization rGO/Fe3O4 in microstructure and - magnetic properties.S. Afr. J. Chem. Eng.20224228028210.1016/j.sajce.2022.08.008
    [Google Scholar]
  41. ChauhanA. VermaR. KumariS. SharmaA. ShandilyaP. LiX. BatooK.M. ImranA. KulshresthaS. KumarR. Re-epithelialization and immune cell behaviour in an ex vivo human skin model.Sci. Rep.202010111610.1038/s41598‑019‑56847‑431913322
    [Google Scholar]
  42. TripathiN. VijayarangamuthuK. RathS. A Raman spectroscopic study of structural evolution of electrochemically deposited ZnO films with deposition time.Mater. Chem. Phys.2011126356857210.1016/j.matchemphys.2011.01.026
    [Google Scholar]
  43. DongJ.J. ZhangX.W. YouJ.B. CaiP.F. YinZ.G. AnQ. MaX.B. JinP. WangZ.G. ChuP.K. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: Identification of hydrogen donors in ZnO.ACS Appl. Mater. Interfaces2010261780178410.1021/am100298p20499898
    [Google Scholar]
  44. Shih-ShouL. HuangD. Morphological variation and raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process.Langmuir201026967626766[PMID: 20146484
    [Google Scholar]
  45. PremkumarT. ZhouY.S. LuY.F. BaskarK. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition.ACS Appl. Mater. Interfaces20102102863286910.1021/am100539q20882957
    [Google Scholar]
  46. LiuY. LuoW. LiR. ChenX. Optical properties of Nd3+ ion-doped ZnO nanocrystals.J. Nanosci. Nanotechnol.20101031871187610.1166/jnn.2010.214020355591
    [Google Scholar]
  47. KarunakaranC. VinayagamoorthyP. JayabharathiJ. Nonquenching of charge carriers by Fe3O4 core in Fe3O4/ZnO nanosheet photocatalyst.Langmuir20143049150311503910.1021/la503940925425261
    [Google Scholar]
  48. WangZ. MaD. YangJ. WangD. WeiB. SongH. LiX. 18F-FDG PET/CT can differentiate vertebral metastases from Schmorl’s nodes by distribution characteristics of the 18F-FDG.Hell. J. Nucl. Med.2016193241244[PMID: 27824963
    [Google Scholar]
  49. ArunT. PrakashK. KuppusamyR. JoseyphusR.J. Magnetic properties of prussian blue modified Fe3O4 nanocubes.J. Phys. Chem. Solids201374121761176810.1016/j.jpcs.2013.07.005
    [Google Scholar]
  50. ZhengJ.H. SongJ.L. ZhaoZ. JiangQ. LianJ.S. Optical and magnetic properties of Nd‐doped ZnO nanoparticles.Cryst. Res. Technol.201247771371810.1002/crat.201200026
    [Google Scholar]
  51. ZhangJ. DengS.J. LiuS.Y. ChenJ.M. HanB.Q. WangY. WangY.D. DengS.J. LiuS.Y. ChenJ.M. HanB.Q. WangY. WangY.D. ZhangJ. DengS.J. LiuS.Y. ChenJ.M. HanB.Q. WangY. WangY.D. Health & environmental research online (HERO).Mater. Technol. Adv. Perform. Mater.2016295262268
    [Google Scholar]
  52. ArmelaoL. BottaroG. PascoliniM. SessoloM. TondelloE. BettinelliM. SpeghiniA. Structure−luminescence correlations in europium-doped sol−gel ZnO nanopowders.J. Phys. Chem. C2008112114049405410.1021/jp710207r
    [Google Scholar]
  53. LinJ.C. PengK.C. LiaoH.L. LeeS.L. Transparent conducting Sc-codoped AZO film prepared from ZnO:Al–Sc by RF-DC sputtering.Thin Solid Films2008516165349535410.1016/j.tsf.2007.07.096
    [Google Scholar]
  54. Al-GaashaniR. RadimanS. DaudA.R. TabetN. Al-DouriY. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods.Ceram. Int.20133932283229210.1016/j.ceramint.2012.08.075
    [Google Scholar]
  55. KaramatS. RawatR.S. LeeP. TanT.L. RamanujanR.V. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation.Prog. Nat. Sci.201424214214910.1016/j.pnsc.2014.03.009
    [Google Scholar]
  56. ZhangQ. LeeI. JooJ.B. ZaeraF. YinY. Core-shell nanostructured catalysts.Acc. Chem. Res.20134681816182410.1021/ar300230s23268644
    [Google Scholar]
  57. QiL. WangS. LiuY. ZhaoP. TianJ. ZhuB. ZhangS. XieW. YuH. Facile preparation of magnetically separable Fe3O4/ZnO nanocomposite with enhanced photocatalytic activity for degradation of rhodamine B.Nanomaterials 2024141192610.3390/nano1411092638869551
    [Google Scholar]
/content/journals/jbcp/10.2174/012665976X355813250331174735
Loading
/content/journals/jbcp/10.2174/012665976X355813250331174735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test