Skip to content
2000
Volume 5, Issue 1
  • ISSN: 3050-8819
  • E-ISSN: 3050-8827

Abstract

Utilization of Artificial Intelligence (AI) techniques in photocatalytic material science and engineering space has received great attention in recent years. This is because photocatalysis focuses on discovering new and efficient photocatalysts, which mostly rely on conventional try-and-error approaches. However, in recent advancements in technology, vigorous screening and analyses of photocatalytic materials data using various AI techniques revealed structure-property-activity relationships. This has proven to accelerate the discovery of more photocatalysts but its adaptation is still at the elementary stage with some enormous challenges. The purpose of this review is to present an overview of the current progresses made in the utilization of AI techniques in various photocatalytic enhancement strategies (., doping, surface modification/co-catalysis, heterostructuring, synthesis/nanostructuring engineering and quantum dots sensitization) to improve on photocatalytic performance of materials. Detailed discussions on the AI techniques utilized to enhance photocatalytic performances have been presented. In addition, challenges associated with AI-based photocatalysis and the future outlook are also presented. The methodology employed was a search for relevant literature and retrieval from various databases for the study. The results indicated that AI technique models were able to predict photocatalytic performances such as pollutant degradation and hydrogen (H) production over 90% of experimental performances. The review concludes that the application of AI techniques can considerably improve the design and optimization of photocatalytic material properties as well as the performance of advanced photocatalytic materials.

Loading

Article metrics loading...

/content/journals/jbcp/10.2174/012665976X372029250403101115
2025-04-22
2025-10-01
Loading full text...

Full text loading...

References

  1. MaiH. LeT.C. ChenD. WinklerD.A. CarusoR.A. Machine learning for electrocatalyst and photocatalyst design and discovery.Chem. Rev.202212216134781351510.1021/acs.chemrev.2c0006135862246
    [Google Scholar]
  2. Mohammadzadeh KakhkiR. ZirjanizadehS. MohammadpoorM. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: In time of artificial intelligence.J. Mater. Sci.20235826105551057510.1007/s10853‑023‑08643‑9
    [Google Scholar]
  3. MasoodH. ToeC.Y. TeohW.Y. SethuV. AmalR. Machine learning for accelerated discovery of solar photocatalysts.ACS Catal.2019912117741178710.1021/acscatal.9b02531
    [Google Scholar]
  4. AkpleM.S. IshigakiT. MadhusudanP. Bio-inspired honeycomb-like graphitic carbon nitride for enhanced visible light photocatalytic CO2 reduction activity.Environ. Sci. Pollut. Res. Int.20202718226042261810.1007/s11356‑020‑08804‑232314294
    [Google Scholar]
  5. GeL. KeY. LiX. Machine learning integrated photocatalysis: Progress and challenges.Chem. Commun.2023595795580610.1039/D3CC00989K
    [Google Scholar]
  6. JiangZ. HuJ. TongM. SamiaA.C. ZhangH.J. YuX.B. A novel machine learning model to predict the photo-degradation performance of different photocatalysts on a variety of water contaminants.Catalysts2021119110710.3390/catal11091107
    [Google Scholar]
  7. NawazA. GoudarziS. AsghariM.A. PichiahS. SelopalG.S. RoseiF. WangZ.M. ZarrinH. Review of hybrid 1D/2D photocatalysts for light-harvesting applications.ACS Appl. Nano Mater.2021411113231135210.1021/acsanm.1c01014
    [Google Scholar]
  8. XiaoM. WangZ. LyuM. LuoB. WangS. LiuG. ChengH.M. WangL. Hollow nanostructures for photocatalysis: Advantages and challenges.Adv. Mater.20193138180136910.1002/adma.20180136930125390
    [Google Scholar]
  9. ZhouY. WangZ. HuangL. ZamanS. LeiK. YueT. LiZ. YouB. XiaB.Y. Engineering 2D photocatalysts toward carbon dioxide reduction.Adv. Energy Mater.2021118200315910.1002/aenm.202003159
    [Google Scholar]
  10. XiaC. WangH. KimJ.K. WangJ. Rational design of metal oxide‐based heterostructure for efficient photocatalytic and photoelectrochemical systems.Adv. Funct. Mater.20213112200824710.1002/adfm.202008247
    [Google Scholar]
  11. AkhundiA. Zaker MoshfeghA. Habibi-YangjehA. SillanpääM. Simultaneous dual-functional photocatalysis by g-C3N4-based nanostructures.ACS ES T Engineering.20222456458510.1021/acsestengg.1c00346
    [Google Scholar]
  12. HuangR. WuJ. ZhangM. LiuB. ZhengZ. LuoD. Strategies to enhance photocatalytic activity of graphite carbon nitride-based photocatalysts.Mater. Des.202121011004010.1016/j.matdes.2021.110040
    [Google Scholar]
  13. Murillo-SierraJ.C. Hernández-RamírezA. Hinojosa-ReyesL. Guzmán-MarJ.L. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications.Chem. Eng. J. Adv.2021510007010.1016/j.ceja.2020.100070
    [Google Scholar]
  14. NavarraW. RitaccoI. SaccoO. CaporasoL. Farnesi CamelloneM. VendittoV. VaianoV. Density functional theory study and photocatalytic activity of ZnO/N-doped TiO2 heterojunctions.J. Phys. Chem. C2022126167000701110.1021/acs.jpcc.2c00152
    [Google Scholar]
  15. FengJ. LongC. YaoL.J. HuC.L. MaoJ.G. α- and β-Ag4P2S7: Two semiconductors with promising photocatalytic hydrogen production based on a density functional theory study.Inorg. Chem.202261186711671410.1021/acs.inorgchem.2c0081535481753
    [Google Scholar]
  16. LiuH. ChenX. LiD. LiuL. LiL. The mechanism of catalytic degradation of secnidazole by semiconductor titanium dioxide: A density functional theory study.Surf. Sci.202372812219810.1016/j.susc.2022.122198
    [Google Scholar]
  17. GuanY. ChaffartD. LiuG. TanZ. ZhangD. WangY. LiJ. Ricardez-SandovalL. Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives.Chem. Eng. Sci.202224811722410.1016/j.ces.2021.117224
    [Google Scholar]
  18. YuY. ZhangJ. SunX. ZhangM. Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study.Surf. Sci.202069112151310.1016/j.susc.2019.121513
    [Google Scholar]
  19. GoswamiL. DekaM.K. RoyM. Artificial intelligence in material engineering: A review on applications of artificial intelligence in material engineering.Adv. Eng. Mater.20232513230010410.1002/adem.202300104
    [Google Scholar]
  20. AsadiS. HassanM. NadiriA. DyllaH. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.Environ. Sci. Pollut. Res. Int.201421148847885710.1007/s11356‑014‑2821‑z24699867
    [Google Scholar]
  21. HuangJ.S. LiewJ.X. AdemiloyeA.S. LiewK.M. Artificial intelligence in materials modeling and design.Arch. Comput. Methods Eng.20212853399341310.1007/s11831‑020‑09506‑1
    [Google Scholar]
  22. DimidukD.M. HolmE.A. NiezgodaS.R. Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering.Integr. Mater. Manuf. Innov.20187315717210.1007/s40192‑018‑0117‑8
    [Google Scholar]
  23. ChenC.T. GuG.X. Machine learning for composite materials.MRS Commun.20199255656610.1557/mrc.2019.32
    [Google Scholar]
  24. AntonyP. ManujeshP. JnaneshN. Data mining and machine learning approaches on engineering materials—A review.2016IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)May 201610.1109/RTEICT.2016.7807785
    [Google Scholar]
  25. ChoudharyK. DeCostB. ChenC. JainA. TavazzaF. CohnR. ParkC.W. ChoudharyA. AgrawalA. BillingeS.J.L. HolmE. OngS.P. WolvertonC. Recent advances and applications of deep learning methods in materials science.NPJ Computational. Materials.2022815910.1038/s41524‑022‑00734‑6
    [Google Scholar]
  26. GeM. SuF. ZhaoZ. SuD. Deep learning analysis on microscopic imaging in materials science.Materials Today Nano20201110008710.1016/j.mtnano.2020.100087
    [Google Scholar]
  27. YangZ. LiX. Catherine BrinsonL. ChoudharyA.N. ChenW. AgrawalA. Microstructural materials design via deep adversarial learning methodology.J. Mech. Des.20181401111141610.1115/1.4041371
    [Google Scholar]
  28. YeW. ChenC. WangZ. ChuI-H. OngS.P. Deep neural networks for accurate predictions of garnet stability.arXiv preprint,20171712.01908.
    [Google Scholar]
  29. Mohammadzadeh KakhkiR. MohammadpoorM. FaridiR. BahadoriM. The development of an artificial neural network – Genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co-doped Fe2O3 nanostructure surface.RSC Adv202010105951596010.1039/C9RA10349J35497422
    [Google Scholar]
  30. Tabatabai-YazdiF.S. Ebrahimian PirbazariA. Esmaeili Khalil SaraeiF. GilaniN. Construction of graphene based photocatalysts for photocatalytic degradation of organic pollutant and modeling using artificial intelligence techniques.Physica B202160841286910.1016/j.physb.2021.412869
    [Google Scholar]
  31. AbdelkareemM.A. SoudanB. MahmoudM.S. SayedE.T. AlMallahiM.N. InayatA. RadiM.A. OlabiA.G. Progress of artificial neural networks applications in hydrogen production.Chem. Eng. Res. Des.2022182668610.1016/j.cherd.2022.03.030
    [Google Scholar]
  32. ParkC.W. WolvertonC. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery.Phys. Rev. Mater.20204606380110.1103/PhysRevMaterials.4.063801
    [Google Scholar]
  33. ChoudharyK. YildirimT. SideriusD.W. KusneA.G. McDannaldA. Ortiz-MontalvoD.L. Graph neural network predictions of metal organic framework CO2 adsorption properties.Comput. Mater. Sci.202221011138810.1016/j.commatsci.2022.111388
    [Google Scholar]
  34. SundarS. SundararaghavanV. Database development and exploration of process–microstructure relationships using variational autoencoders.Mater. Today Commun.20202510120110.1016/j.mtcomm.2020.101201
    [Google Scholar]
  35. RajakP. KrishnamoorthyA. NakanoA. VashishtaP. KaliaR. Structural phase transitions in a MoWSe2 monolayer: Molecular dynamics simulations and variational autoencoder analysis.Phys. Rev. B2019100101410810.1103/PhysRevB.100.014108
    [Google Scholar]
  36. YamanM.Y. KalininS.V. GuyeK.N. GingerD.S. ZiatdinovM. Learning and predicting photonic responses of plasmonic nanoparticle assemblies via dual variational autoencoders.Small20221925220589310.1002/smll.20220589336942857
    [Google Scholar]
  37. CaoS. LuoY. LiT. LiJ. WuL. LiuG. Machine learning assisted screening of doped metals phosphides electrocatalyst towards efficient hydrogen evolution reaction.Molecular Catalysis202355111362510.1016/j.mcat.2023.113625
    [Google Scholar]
  38. LuoY. DuX. WuL. WangY. LiJ. Ricardez-SandovalL. Machine-learning-accelerated screening of double-atom/cluster electrocatalysts for the oxygen reduction reaction.J. Phys. Chem. C202312741203722038410.1021/acs.jpcc.3c05753
    [Google Scholar]
  39. WeiJ. ChuX. SunX.Y. XuK. DengH.X. ChenJ. WeiZ. LeiM. Machine learning in materials science.InfoMat20191333835810.1002/inf2.12028
    [Google Scholar]
  40. KirklinS. SaalJ.E. MeredigB. ThompsonA. DoakJ.W. AykolM. RühlS. WolvertonC. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies.NPJ Computational. Materials.2015111501010.1038/npjcompumats.2015.10
    [Google Scholar]
  41. AgrawalA. ChoudharyA. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science.APL Mater.20164505320810.1063/1.4946894
    [Google Scholar]
  42. HansenK. BieglerF. RamakrishnanR. PronobisW. von LilienfeldO.A. MüllerK.R. TkatchenkoA. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space.J. Phys. Chem. Lett.20156122326233110.1021/acs.jpclett.5b0083126113956
    [Google Scholar]
  43. KalidindiS.R. De GraefM. Materials data science: Current status and future outlook.Annu. Rev. Mater. Res.201545117119310.1146/annurev‑matsci‑070214‑020844
    [Google Scholar]
  44. AndersenM. ReuterK. Adsorption enthalpies for catalysis modeling through machine-learned descriptors.Acc. Chem. Res.202154122741274910.1021/acs.accounts.1c0015334080415
    [Google Scholar]
  45. AroraI. ChawlaH. ChandraA. SagadevanS. GargS. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst.Inorg. Chem. Commun.202214310970010.1016/j.inoche.2022.109700
    [Google Scholar]
  46. PanthiG. ParkM. Approaches for enhancing the photocatalytic activities of barium titanate: A review.J. Energy Chem.20227316018810.1016/j.jechem.2022.06.023
    [Google Scholar]
  47. MarschallR. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity.Adv. Funct. Mater.201424172421244010.1002/adfm.201303214
    [Google Scholar]
  48. ChawlaH. ChandraA. IngoleP.P. GargS. Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M = W, Mo, Cr) for environmental remediation and clean energy production.J. Ind. Eng. Chem.20219511510.1016/j.jiec.2020.12.028
    [Google Scholar]
  49. SyedN. HuangJ. FengY. CQDs as emerging trends for future prospect in enhancement of photocatalytic activity.Carbon Lett202111710.1007/s42823‑021‑00282‑x
    [Google Scholar]
  50. EmamH.E. AhmedH.B. GomaaE. HelalM.H. AbdelhameedR.M. Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation.J. Photochem. Photobiol. Chem.201938311198610.1016/j.jphotochem.2019.111986
    [Google Scholar]
  51. Raja-MoganT. LehouxA. TakashimaM. KowalskaE. OhtaniB. Slow photon-induced enhancement of photocatalytic activity of gold nanoparticle-incorporated titania inverse opal.Chem. Lett.202150471171310.1246/cl.200804
    [Google Scholar]
  52. JeonJ.P. KweonD.H. JangB.J. JuM.J. BaekJ.B. Enhancing the photocatalytic activity of TiO2 catalysts.Adv. Sustain. Syst.2020412200019710.1002/adsu.202000197
    [Google Scholar]
  53. LiuG. WangL. YangH.G. ChengH-M. LuG.Q.M. Titania-based photocatalysts—crystal growth, doping and heterostructuring.J. Mater. Chem.201020583184310.1039/B909930A
    [Google Scholar]
  54. JiangL. YuanX. PanY. LiangJ. ZengG. WuZ. WangH. Doping of graphitic carbon nitride for photocatalysis: A review.Appl. Catal. B201721738840610.1016/j.apcatb.2017.06.003
    [Google Scholar]
  55. AbdelhaleemA. ChuW. Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst.J. Hazard. Mater.201733849150110.1016/j.jhazmat.2017.05.05628618371
    [Google Scholar]
  56. NasirianM. LinY.P. Bustillo-LecompteC.F. MehrvarM. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: A review.Int. J. Environ. Sci. Technol.20181592009203210.1007/s13762‑017‑1618‑2
    [Google Scholar]
  57. YaoW. IwaiH. YeJ. Effects of molybdenum substitution on the photocatalytic behavior of BiVO4.Dalton Trans.2008111426143010.1039/b713338c18322621
    [Google Scholar]
  58. WangS. WangY. GaoH. LiJ. FangL. YuX. TangS. ZhaoX. SunG. Synthesis and characterization of BaAl2O4: Ce and Mn-Ce-co-doped BaAl2O4 composite materials by a modified polyacrylamide gel method and prediction of photocatalytic activity using artificial neural network (ANN) algorithm.Optik202022116536310.1016/j.ijleo.2020.165363
    [Google Scholar]
  59. NesfchiM.M. PirbazariA.E. SaraeiF.E.K. RojaeeF. MahdaviF. Fa’al RastegarS.A. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the process by artificial intelligence techniques.Mater. Sci. Semicond. Process.202112210546510.1016/j.mssp.2020.105465
    [Google Scholar]
  60. GaoB. SunM. DingZ. LiuW. Machine learning-optimized synthesis of doped TiO2 with improved photocatalytic performance: A multi-step workflow supported by designed wet-lab experiments.J. Alloys Compd.202188116053410.1016/j.jallcom.2021.160534
    [Google Scholar]
  61. ChenC. LiQ. ZhangQ. LiY. WeiY. WangS. Artificial neural network algorithm for predict the photocatalytic activity of the Mn co-doped MgAl2O4: Ce composite photocatalyst.2019IEEE International Conference on Signal, Information and Data Processing (ICSIDP)December 201910.1109/ICSIDP47821.2019.9173359
    [Google Scholar]
  62. ZimurS.D. GaikwadP. MaliA.V. PatilA.P. BurungaleS.H. KambleP.D. Magnetic and structural characterization of Sn doped cobalt ferrites; A visible light-driven photocatalysts for degradation of rhodamine-B and modeling the process by artificial intelligence tools.J. Alloys Compd.202394716957210.1016/j.jallcom.2023.169572
    [Google Scholar]
  63. LiuQ. PanK. LuY. WeiW. WangS. DuW. DingZ. ZhouY. Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst.J. Water Process Eng.20224910312610.1016/j.jwpe.2022.103126
    [Google Scholar]
  64. YanL. ZhongS. IgouT. GaoH. LiJ. ChenY. Development of machine learning models to enhance element-doped g-C3N4 photocatalyst for hydrogen production through splitting water.Int. J. Hydrogen Energy20224780340753408910.1016/j.ijhydene.2022.08.013
    [Google Scholar]
  65. ZhangY. XuX. Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters.ACS Omega2020525153441535210.1021/acsomega.0c0143832637808
    [Google Scholar]
  66. ShanJ. WuX. LiC. HuJ. ZhangZ. LiuH. XiaP. HuangX. Degradation of oxytetracycline hydrochloride using photocatalysis in the presence of Fe3O4/rGO/co-doped ZnO/g-C3N4 nanocomposite particles: Experiment, modeling, optimization and mechanistic evaluation.Mater. Today Commun.20223310494110.1016/j.mtcomm.2022.104941
    [Google Scholar]
  67. AzadiS. Karimi-JashniA. JavadpourS. Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: Application of artificial neural network and genetic algorithm.Process Saf. Environ. Prot.201811726727710.1016/j.psep.2018.03.038
    [Google Scholar]
  68. GheytanzadehM. BaghbanA. HabibzadehS. JabbourK. EsmaeiliA. MohaddespourA. AbidaO. An insight into tetracycline photocatalytic degradation by MOFs using the artificial intelligence technique.Sci. Rep.2022121661510.1038/s41598‑022‑10563‑835459922
    [Google Scholar]
  69. ChowV. PhanR.C.W. NgoA.C.L. KrishnasamyG. ChaiS.P. Data-driven photocatalytic degradation activity prediction with gaussian process.Process Saf. Environ. Prot.202216184885910.1016/j.psep.2022.03.020
    [Google Scholar]
  70. Jamali AlyaniS. Ebrahimian PirbazariA. Esmaeili KhalilsaraeiF. Asasian KolurN. GilaniN. Growing co-doped TiO2 nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network.J. Alloys Compd.201979916918210.1016/j.jallcom.2019.05.175
    [Google Scholar]
  71. RamkumarG. TamilselviM. JebaseelanS.S. MohanavelV. KamyabH. AnithaG. PrabuR.T. RajasimmanM. Enhanced machine learning for nanomaterial identification of photo thermal hydrogen production.Int. J. Hydrogen Energy20235269670810.1016/j.ijhydene.2023.07.128
    [Google Scholar]
  72. AltunerE.E. El Houda TiriR.N. AygunA. GulbagcaF. SenF. IranbakhshA. KarimiF. VasseghianY. DragoiE.N. Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: Development of machine learning model.Chem. Eng. Res. Des.202218418019010.1016/j.cherd.2022.05.021
    [Google Scholar]
  73. LinJ. GulbagcaF. AygunA. Elhouda TiriR.N. XiaC. Van LeQ. GurT. SenF. VasseghianY. Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH4, biological activities and photodegradation on azo dyes: Development of machine learning model.Food Chem. Toxicol.202216311297210.1016/j.fct.2022.11297235398181
    [Google Scholar]
  74. EstahbanatiM.R.K. FeilizadehM. IliutaM.C. Photocatalytic valorization of glycerol to hydrogen: Optimization of operating parameters by artificial neural network.Appl. Catal. B201720948349210.1016/j.apcatb.2017.03.016
    [Google Scholar]
  75. ZhangL. XingX. LiuY. ShiW. WangM. Directional methanolysis of kitchen waste for the co-production of methyl levulinate and fatty acid methyl esters: Catalytic strategy and machine learning modeling.Bioresour. Technol.202336712827410.1016/j.biortech.2022.12827436351533
    [Google Scholar]
  76. DiT. XuQ. HoW. TangH. XiangQ. YuJ. Review on metal sulphide‐based Z‐scheme photocatalysts.ChemCatChem20191151394141110.1002/cctc.201802024
    [Google Scholar]
  77. LowJ. JiangC. ChengB. WagehS. Al-GhamdiA.A. YuJ. A review of direct Z‐scheme photocatalysts.Small Methods201715170008010.1002/smtd.201700080
    [Google Scholar]
  78. YuanY. GuoR. HongL. JiX. LinZ. LiZ. PanW. A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments.Mater. Today Energy20212110082910.1016/j.mtener.2021.100829
    [Google Scholar]
  79. Schlexer LamoureuxP. WintherK.T. Garrido TorresJ.A. StreibelV. ZhaoM. BajdichM. Abild-PedersenF. BligaardT. Machine learning for computational heterogeneous catalysis.ChemCatChem201911163581360110.1002/cctc.201900595
    [Google Scholar]
  80. GordanshekanA. ArabianS. Solaimany NazarA.R. FarhadianM. TangestaninejadS. A comprehensive comparison of green Bi2WO6/g-C3N4 and Bi2WO6/TiO2 S-scheme heterojunctions for photocatalytic adsorption/degradation of cefixime: Artificial neural network, degradation pathway, and toxicity estimation.Chem. Eng. J.202345113906710.1016/j.cej.2022.139067
    [Google Scholar]
  81. TaoufikN. JananiF.Z. KhiarH. SadiqM. AbdennouriM. SillanpääM. AchakM. BarkaN. MgO-La2O3 mixed metal oxides heterostructure catalysts for photodegradation of dyes pollutant: Synthesis, characterization and artificial intelligence modelling.Environ. Sci. Pollut. Res. Int.2022309239382396410.1007/s11356‑022‑23690‑636329247
    [Google Scholar]
  82. AttariKhasraghi N.; Zare, K.; Mehrizad, A.; Modirshahla, N.; Behnajady, M.A. Zeolite 4A supported CdS/g-C3N4 type-II heterojunction: A novel visible-light-active ternary nanocomposite for potential photocatalytic degradation of cefoperazone.J. Mol. Liq.202134211747910.1016/j.molliq.2021.117479
    [Google Scholar]
  83. AsoubarS. MehrizadA. BehnajadyM.A. RamazaniM.E. GharbaniP. Hexavalent chromium reduction and Rhodamine B degradation by visible-light-driven photocatalyst of stannum indium sulfide-samarium vanadate.NPJ Clean Water2023612710.1038/s41545‑023‑00246‑w
    [Google Scholar]
  84. ParidaV.K. SrivastavaS.K. ChowdhuryS. GuptaA.K. Facile synthesis of 2D/0D Bi2O3/MnO2 Z-scheme heterojunction for enhanced visible light-assisted photocatalytic degradation of acetaminophen.Chem. Eng. J.202347214496910.1016/j.cej.2023.144969
    [Google Scholar]
  85. EsmaeiliA. Pourranjabar Hasan KiadehS. Ebrahimian PirbazariA. Esmaeili Khalil SaraeiF. Ebrahimian PirbazariA. DerakhsheshA. Tabatabai-YazdiF.S. CdS nanocrystallites sensitized ZnO nanosheets for visible light induced sonophotocatalytic/photocatalytic degradation of tetracycline: From experimental results to a generalized model based on machine learning methods.Chemosphere202333213885210.1016/j.chemosphere.2023.13885237146776
    [Google Scholar]
  86. ShangQ. LiuX. ZhangM. ZhangP. LingY. CuiG. LiuW. ShiX. YueJ. TangB. Photocatalytic degradation of ofloxacin antibiotic wastewater using TS-1/C3N4 composite photocatalyst: Reaction performance optimisation and estimation of wastewater component synergistic effect by artificial neural network and genetic algorithm.Chem. Eng. J.202244313635410.1016/j.cej.2022.136354
    [Google Scholar]
  87. HosseiniO. Zare-ShahabadiV. GhaediM. AzqhandiM.H.A. Experimental design, RSM and ANN modeling of tetracycline photocatalytic degradation using LDH@CN.J. Environ. Chem. Eng.202210510834510.1016/j.jece.2022.108345
    [Google Scholar]
  88. ShangQ. ChiW. ZhangP. LingY. LiuX. CuiG. LiuW. ShiX. TangB. Optimization of Bi2O3/TS-1 preparation and photocatalytic reaction conditions for low concentration erythromycin wastewater treatment based on artificial neural network.Process Saf. Environ. Prot.202215729730510.1016/j.psep.2021.11.031
    [Google Scholar]
  89. LiM. WangS. GaoH. YinZ. ChenC. YangH. FangL. Angadi VeerabhadrappaJ. YiZ. LiD. Selective removal of antibiotics over MgAl2O4/C3N4/YMnO3 photocatalysts: Performance prediction and mechanism insight.J. Am. Ceram. Soc.202310642420244210.1111/jace.18946
    [Google Scholar]
  90. YangF. YuX. WangK. LiuZ. GaoZ. ZhangT. NiuJ. ZhaoJ. YaoB. Photocatalytic degradation of methylene blue over BiVO4/BiPO4/rGO heterojunctions and their artificial neural network model.J. Alloys Compd.202396017071610.1016/j.jallcom.2023.170716
    [Google Scholar]
  91. SubramanianY. GajendiranJ. VeenaR. AzadA.K. SabarishV.C.B. Muhammed AliS.A. KumarA. GubendiranR.K. Structural, photoabsorption and photocatalytic characteristics of BiFeO3-WO3 nanocomposites: An attempt to validate the experimental data through SVM-based artificial intelligence (AI).J. Electron. Mater.20235242421243110.1007/s11664‑022‑10188‑7
    [Google Scholar]
  92. MohsenianM. YousefiF. DashtianK. GhaediM. SabzehmeidaniM.M. Bi/BiPO4 nanocubes supported BiOI-BiOCl nanoplate as a heterostructured blue-light-driven photocatalyst for degradation of Auramine O.Polyhedron202221211553910.1016/j.poly.2021.115539
    [Google Scholar]
  93. WangS. LiM. GaoH. YinZ. ChenC. YangH. FangL. Jagadeesha AngadiV. YiZ. LiD. Construction of CeO2/ YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight.Appl. Surf. Sci.202360815497710.1016/j.apsusc.2022.154977
    [Google Scholar]
  94. AtaeiA. MehrizadA. ZareK. Photocatalytic degradation of cefazoline antibiotic using zeolite-supported CdS/CaFe2O4 Z-scheme photocatalyst: Optimization and modeling of process by RSM and ANN.J. Mol. Liq.202132811547610.1016/j.molliq.2021.115476
    [Google Scholar]
  95. ShabaniA. NabiyouniG. GhanbariD. Preparation and photocatalytic study of CoFe2O4/TiO2/Au nanocomposites and their applications in organic pollutant degradation and modeling by an artificial neural network (ANN).J. Mater. Sci. Mater. Electron.202233139885990410.1007/s10854‑022‑07978‑4
    [Google Scholar]
  96. RaniA. ReddyR. SharmaU. MukherjeeP. MishraP. KuilaA. SimL.C. SaravananP. A review on the progress of nanostructure materials for energy harnessing and environmental remediation.J. Nanostructure Chem.20188325529110.1007/s40097‑018‑0278‑1
    [Google Scholar]
  97. MuiruriJ.K. YeE. ZhuQ. LohX.J. LiZ. Recent advance in nanostructured materials innovation towards photocatalytic CO2 reduction.Appl. Catal. A Gen.202264811892710.1016/j.apcata.2022.118927
    [Google Scholar]
  98. Mekki-BerradaF. RenZ. HuangT. WongW.K. ZhengF. XieJ. TianI.P.S. JayaveluS. MahfoudZ. BashD. HippalgaonkarK. KhanS. BuonassisiT. LiQ. WangX. Two-step machine learning enables optimized nanoparticle synthesis.NPJ Comput. Mater.2021715510.1038/s41524‑021‑00520‑w
    [Google Scholar]
  99. GhanbaryF. ModirshahlaN. KhosraviM. BehnajadyM.A. Synthesis of TiO2 nanoparticles in different thermal conditions and modeling its photocatalytic activity with artificial neural network.J. Environ. Sci. 201224475075610.1016/S1001‑0742(11)60815‑222894112
    [Google Scholar]
  100. BoutraB. SebtiA. TrariM. Response surface methodology and artificial neural network for optimization and modeling the photodegradation of organic pollutants in water.Int. J. Environ. Sci. Technol.20221911112631127810.1007/s13762‑021‑03875‑1
    [Google Scholar]
  101. OrimotoY. WatanabeK. YamashitaK. UeharaM. NakamuraH. FuruyaT. MaedaH. Application of artificial neural networks to rapid data analysis in combinatorial nanoparticle syntheses.J. Phys. Chem. C201211633178851789610.1021/jp3031122
    [Google Scholar]
  102. TaoH. WuT. AldeghiM. WuT.C. Aspuru-GuzikA. KumachevaE. Nanoparticle synthesis assisted by machine learning.Nat. Rev. Mater.20216870171610.1038/s41578‑021‑00337‑5
    [Google Scholar]
  103. LiJ. ChenT. LimK. ChenL. KhanS.A. XieJ. WangX. Deep learning accelerated gold nanocluster synthesis.Adv. Intell. Syst.201913190002910.1002/aisy.201900029
    [Google Scholar]
  104. YuanY. JinN. SaghyP. DubeL. ZhuH. ChenO. Quantum dot photocatalysts for organic transformations.J. Phys. Chem. Lett.202112307180719310.1021/acs.jpclett.1c0171734309389
    [Google Scholar]
  105. PengJ. MuhammadR. WangS.L. ZhongH.Z. How machine learning accelerates the development of quantum dots?Chin. J. Chem.202139118118810.1002/cjoc.202000393
    [Google Scholar]
  106. SingulaniA.P. Vilela NetoO.P. Aurélio PachecoM.C. VellascoM.B.R. PiresM.P. SouzaP.L. Computational intelligence applied to the growth of quantum dots.J. Cryst. Growth2008310235063506510.1016/j.jcrysgro.2008.07.065
    [Google Scholar]
  107. PelicanoC.M. RapadasN. CagatanG. MagdaluyoE. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots.Proceedings of the 3rd Advanced Materials Conference 2016 (3rd AMC 2016), December201710.1063/1.5010451
    [Google Scholar]
  108. RegoniaP.R. PelicanoC.M. TaniR. IshizumiA. YanagiH. IkedaK. Predicting the band gap of ZnO quantum dots via supervised machine learning models.Optik202020716446910.1016/j.ijleo.2020.164469
    [Google Scholar]
  109. ChenY. HuangY. ChengT. GoddardW.A. III Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations.J. Am. Chem. Soc.201914129116511165710.1021/jacs.9b0495631287676
    [Google Scholar]
  110. MargrafJ.T. JungH. ScheurerC. ReuterK. Exploring catalytic reaction networks with machine learning.Nat. Catal.20236211212110.1038/s41929‑022‑00896‑y
    [Google Scholar]
  111. MaS. LiuZ.P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: Current status and future.ACS Catal.20201022132131322610.1021/acscatal.0c03472
    [Google Scholar]
/content/journals/jbcp/10.2174/012665976X372029250403101115
Loading
/content/journals/jbcp/10.2174/012665976X372029250403101115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test