Skip to content
2000
Volume 5, Issue 1
  • ISSN: 3050-8819
  • E-ISSN: 3050-8827

Abstract

Introduction

Graphitic carbon nitride (g-CN) is a promising photocatalytic material due to its unique structural and electronic properties that enhance photocatalytic activity under UV light. Its layered structure and suitable electronic configuration facilitate the generation of reactive species necessary for catalyzing reactions, such as the degradation of azo dyes, organic pollutants, and hydrogen production.

Aim

The aim of the present manuscript is the preparation of g-CN using different methods and educts and the use of the prepared materials for the decoloration of dermacid red.

Objective

The objective of this research is to evaluate the photocatalytic efficiency of g-CN materials, focusing on the impact of different synthesis and exfoliation methods on their performance, particularly in the degradation of the azo dye Dermacid Red.

Methods

Characterization techniques such as Powder X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) were employed to confirm the successful synthesis of the materials and to outline structural differences originating from variations in the synthesis process. The photocatalytic performance was assessed using a custom-designed photocatalytic reactor equipped with UV lamps.

Results and Discussion

The study reveals that photocatalytic efficiency significantly depends on the material's properties, with chemical and ultrasonic exfoliation methods resulting in a substantial increase in efficiency. Notably, after just four minutes of exposure, complete degradation of the azo dye was achieved, highlighting the g-CN material's potential for practical applications in wastewater treatment and environmental remediation processes.

Conclusion

The consistent results obtained across varying sample preparations further substantiate the reliability of the synthesized materials. This research contributes valuable insights into the development of effective photocatalysts, paving the way for their integration into various industrial processes aimed at pollution reduction and sustainable practices.

Loading

Article metrics loading...

/content/journals/jbcp/10.2174/012665976X376057250403143720
2025-04-22
2025-10-01
Loading full text...

Full text loading...

References

  1. RothenbergG. Catalysis: Concepts and Green Applications.2nd edHoboken, NJWiley201711510.1002/9783527699827
    [Google Scholar]
  2. GoldV. The IUPAC Compendium of Chemical Terminology: The Gold Book; International Union of Pure and Applied Chemistry.Research Triangle Park, NCIUPAC2019
    [Google Scholar]
  3. BaeT.H. TakT.M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration.J. Membr. Sci.20052491-21810.1016/j.memsci.2004.09.008
    [Google Scholar]
  4. BernhardA.M. PeitzD. ElsenerM. WokaunA. KröcherO. Hydrolysis and thermolysis of urea and its decomposition byproducts biuret, cyanuric acid and melamine over anatase TiO2.Appl. Catal. B2012115-11612913710.1016/j.apcatb.2011.12.013
    [Google Scholar]
  5. ChidhambaramN. RavichandranK. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications.Mater. Lett.2017207444810.1016/j.matlet.2017.07.040
    [Google Scholar]
  6. DongJ. ZhangY. HussainM.I. ZhouW. ChenY. WangL.N. g-C3N4: Properties, pore modifications, and photocatalytic applications.Nanomaterials202112112110.3390/nano1201012135010072
    [Google Scholar]
  7. DongJ. ShiY. HuangC. WuQ. ZengT. YaoW. A New and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production.Appl. Catal. B2019243273510.1016/j.apcatb.2018.10.016
    [Google Scholar]
  8. GanesanS. KokulnathanT. SumathiS. PalaniappanA. Efficient photocatalytic degradation of textile dye pollutants using thermally exfoliated graphitic carbon nitride (TE–g–C3N4).Sci. Rep.2024141228410.1038/s41598‑024‑52688‑y38280908
    [Google Scholar]
  9. KudoA. MisekiY. Heterogeneous photocatalyst materials for water splitting.Chem. Soc. Rev.200938125327810.1039/B800489G19088977
    [Google Scholar]
  10. SandbergM. HåkanssonK. GranbergH. Paper machine manufactured photocatalysts - Lateral variations.J. Environ. Chem. Eng.20208510407510.1016/j.jece.2020.104075
    [Google Scholar]
  11. PazY. LuoZ. RabenbergL. HellerA. Photooxidative self-cleaning transparent titanium dioxide films on glass.J. Mater. Res.199510112842284810.1557/JMR.1995.2842
    [Google Scholar]
  12. AdjimiS. RouxJ.C. SergentN. DelpechF. ThivelP.X. Pera-TitusM. Photocatalytic oxidation of ethanol using paper-based nano-TiO2 immobilized on porous silica: A modelling study.Chem. Eng. J.201425138139110.1016/j.cej.2014.04.013
    [Google Scholar]
  13. ScanlonD.O. DunnillC.W. BuckeridgeJ. ShevlinS.A. LogsdailA.J. WoodleyS.M. CatlowC.R.A. PowellM.J. PalgraveR.G. ParkinI.P. WatsonG.W. KealT.W. SherwoodP. WalshA. SokolA.A. Band alignment of rutile and anatase TiO2.Nat. Mater.201312979880110.1038/nmat369723832124
    [Google Scholar]
  14. EtacheriV. Di ValentinC. SchneiderJ. BahnemannD. PillaiS.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments.J. Photochem. Photobiol. Photochem. Rev.20152512910.1016/j.jphotochemrev.2015.08.003
    [Google Scholar]
  15. AlzardR.H. SiddigL.A. AbdelhamidA.S. RamachandranT. AlzamlyA. Structural analysis and photocatalytic activities of bismuth-lanthanide oxide perovskites.J. Solid State Chem.202432912435910.1016/j.jssc.2023.124359
    [Google Scholar]
  16. SiddigL.A. AlzardR.H. AbdelhamidA.S. RamachandranT. NguyenH.L. PazA.P. AlzamlyA. Cobalt hydrogen-bonded organic framework as a visible light-driven photocatalyst for CO2 cycloaddition reaction.Inorg. Chem.20236238155501556410.1021/acs.inorgchem.3c0205137698585
    [Google Scholar]
  17. LiuX. ZhangQ. ZhaoS. WangZ. LiuY. ZhengZ. ChengH. DaiY. HuangB. WangP. Integrating mixed halide perovskite photocatalytic hi splitting and electrocatalysis into a loop for efficient and robust pure water splitting.Adv. Mater.20233519220891510.1002/adma.20220891536862941
    [Google Scholar]
  18. LiuX. LouZ. Integration of multi-strategy modifications in an Au cocatalyst-loaded 2D/2D BiVO4/P-doped g-C3N4 Z-scheme heterojunction for efficient photocatalytic CO2 reduction.Appl. Surf. Sci.202568016132810.1016/j.apsusc.2024.161328
    [Google Scholar]
  19. SabuT. AnasS. JoyJ. Synthesis, Characterization, and Applications of Graphitic Carbon Nitride.Elsevier2023
    [Google Scholar]
  20. WuP. WangJ. ZhaoJ. GuoL. OsterlohF.E. Structure defects in g-C 3 N 4 limit visible light driven hydrogen evolution and photovoltage.J. Mater. Chem. A Mater. Energy Sustain.2014247203382034410.1039/C4TA04100C
    [Google Scholar]
  21. MarthaS. NashimA. ParidaK.M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light.J. Mater. Chem. A Mater. Energy Sustain.2013126781610.1039/c3ta10851a
    [Google Scholar]
  22. WangH. ZhaoY. YangZ. BiX. WangZ. WuM. Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate.N. Carbon Mater.20223761135114210.1016/S1872‑5805(22)60619‑X
    [Google Scholar]
  23. YanS.C. LiZ.S. ZouZ.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine.Langmuir20092517103971040110.1021/la900923z19705905
    [Google Scholar]
  24. CapobiancoM.D. JayworthJ.A. ShangB. HarmonN.J. WangH. BrudvigG.W. Effect of synthesis temperature on transient photoconductivity of g-C3N4 from urea.Chem. Mater.202335229747975510.1021/acs.chemmater.3c02277
    [Google Scholar]
  25. SharmaP. SarnganP.P. LakshmananA. SarkarD. One-step synthesis of highly reactive g-C3N4.J. Mater. Sci. Mater. Electron.202233129116912510.1007/s10854‑021‑07142‑4
    [Google Scholar]
  26. GroenewoltM. AntoniettiM. Synthesis of g‐C 3 N 4 nanoparticles in mesoporous silica host matrices.Adv. Mater.200517141789179210.1002/adma.200401756
    [Google Scholar]
  27. ThomasA. FischerA. GoettmannF. AntoniettiM. MüllerJ.O. SchlöglR. CarlssonJ.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts.J. Mater. Chem.20081841489310.1039/b800274f
    [Google Scholar]
  28. KesslerF.K. ZhengY. SchwarzD. MerschjannC. SchnickW. WangX. BojdysM.J. Functional carbon nitride materials- Design strategies for electrochemical devices.Nat. Rev. Mater.2017261703010.1038/natrevmats.2017.30
    [Google Scholar]
  29. ZhengY. ZhangZ. LiC. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis.J. Photochem. Photobiol. Chem.2017332324410.1016/j.jphotochem.2016.08.005
    [Google Scholar]
  30. SchaberP.M. ColsonJ. HigginsS. ThielenD. AnspachB. BrauerJ. Thermal decomposition (pyrolysis) of urea in an open reaction vessel.Thermochim. Acta20044241-213114210.1016/j.tca.2004.05.018
    [Google Scholar]
  31. EichelbaumM. FarrautoR.J. CastaldiM.J. The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NOxPart I. Pyrolysis and hydrolysis of urea over zeolite catalysts.Appl. Catal. B2010971-2909710.1016/j.apcatb.2010.03.027
    [Google Scholar]
  32. HoW. ZhangZ. LinW. HuangS. ZhangX. WangX. HuangY. Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4.ACS Appl. Mater. Interfaces2015795497550510.1021/am509213x25706325
    [Google Scholar]
  33. DingZ. ChenX. AntoniettiM. WangX. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation.ChemSusChem20114227428110.1002/cssc.20100014920872401
    [Google Scholar]
  34. NiuP. ZhangL. LiuG. ChengH.M. Graphene‐like carbon nitride nanosheets for improved photocatalytic activities.Adv. Funct. Mater.201222224763477010.1002/adfm.201200922
    [Google Scholar]
  35. XuJ. ZhangL. ShiR. ZhuY. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis.J. Mater. Chem. A Mater. Energy Sustain.20131461476610.1039/c3ta13188b
    [Google Scholar]
  36. HuangY. WangY. BiY. JinJ. EhsanM.F. FuM. HeT. Preparation of 2D hydroxyl-rich carbon nitride nanosheets for photocatalytic reduction of CO2.RSC Advances2015542332543326110.1039/C5RA04227E
    [Google Scholar]
  37. LuX. XuK. ChenP. JiaK. LiuS. WuC. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity.J. Mater. Chem. A Mater. Energy Sustain.2014244189241892810.1039/C4TA04487H
    [Google Scholar]
  38. KashyapT. BoruahP.J. BailungH. SanyalD. ChoudhuryB. Simultaneous layer exfoliation and defect activation in g-C 3 N 4 nanosheets with air–water interfacial plasma: spectroscopic defect probing with tailored optical properties.Nanoscale Adv.20213113260327110.1039/D1NA00098E36133658
    [Google Scholar]
  39. CAS a division of the American chemical society.Available from: https://Commonchemistry.Cas.Org/Detail?Cas_rn=6406-56-0
  40. MaroudasA. PandisP.K. ChatzopoulouA. DavellasL.R. SourkouniG. ArgirusisC. Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction.Ultrason. Sonochem.20217110536710.1016/j.ultsonch.2020.10536733125964
    [Google Scholar]
  41. Olufemi OluwoleA. KhozaP. OlatunjiO.S. Synthesis and characterization of g‐C3 N4 doped with activated carbon (AC) prepared from grape leaf litters for the photocatalytic degradation of enrofloxacin in aqueous systems.ChemistrySelect2022745e20220360110.1002/slct.202203601
    [Google Scholar]
  42. MaedaK. AnD. KurikiR. LuD. IshitaniO. Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex.Beilstein J. Org. Chem.2018141806181210.3762/bjoc.14.15330112084
    [Google Scholar]
  43. ZhangM. YangY. AnX. ZhaoJ. BaoY. HouL. Exfoliation method matters: The microstructure-dependent photoactivity of g-C3N4 nanosheets for water purification.J. Hazard. Mater.2022424Pt B12742410.1016/j.jhazmat.2021.12742434634708
    [Google Scholar]
  44. LinQ. LiL. LiangS. LiuM. BiJ. WuL. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities.Appl. Catal. B201516313514210.1016/j.apcatb.2014.07.053
    [Google Scholar]
  45. TyborskiT. MerschjannC. OrthmannS. YangF. Lux-SteinerM.C. Schedel-NiedrigT. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications.J. Phys. Condens. Matter2013253939540210.1088/0953‑8984/25/39/39540223999163
    [Google Scholar]
  46. LouY. ShiY. LiuS. HeJ. LiY. TaoL. ZengL. LongH. WenQ. LiJ. Preparation of ultrathin graphitic carbon nitride nanosheet and its application to a tunable multi-wavelength mode-locked fiber laser.Opt. Mater.20188638238610.1016/j.optmat.2018.10.037
    [Google Scholar]
  47. HesseM. MeierH. ZeehB. BienzS. BiglerL. FoxT. Spektroskopische Methoden in Der Organischen Chemie.StuttgartGeorg Thieme Publisher201210.1055/b‑002‑46984
    [Google Scholar]
/content/journals/jbcp/10.2174/012665976X376057250403143720
Loading
/content/journals/jbcp/10.2174/012665976X376057250403143720
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test