Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Aim

This study was undertaken to compare the proteomic profile of sequential isolates of Beijing lineage () from a patient who developed drug-resistant tuberculosis (TB) during anti-tuberculosis therapy (ATT).

Introduction

Various studies have found the Beijing lineage of strongly associated with multidrug resistance (MDR) development.

Objectives

To identify and characterize the differentially expressed proteins during the drug resistance conversion in Beijing lineage clinical isolates.

Methods

Drug-susceptible and drug-resistant isolates were confirmed as Beijing lineage. The isolates were grown in Middlebrook 7H9 medium for two weeks, and whole-cell lysate was prepared. Two-dimensional gel electrophoresis (2DGE) was used for proteomic analysis, and differentially expressed proteins were identified using MALDI-TOF-MS. Bioinformatics tools were used for molecular docking, phosphorylation, and pupylation site prediction.

Results

Seventeen proteins were found overexpressed in drug-resistant isolates as compared to drug-susceptible isolates, including the six proteins with unknown functions. Molecular docking showed that Isoniazid (INH) and Rifampicin (RIF) interacted with their conserved domains/active sites of these proteins.

Discussion

We characterized two paired clinical isolates from a patient, one being INH and RIF susceptible and other resistant. The comparative analysis of over expressed proteins showed that 5 of 17 proteins belonged to the cell wall and cell processes functional group, 3 to virulence, detoxification, adaptation functional group, and 3 to information pathways functional group, 2 proteins belonged to insertion sequences and phage functional group, and 1 each (Rv0242c, Rv2970c and Rv3208A) to lipid metabolism, intermediary metabolism & respiration and regulatory functional group. We found that the Rv1827, Rv2626c, Rv2714, Rv2970c, Rv3208A, and Rv3881c proteins showed significant interaction with INH and RIF.

Conclusions

These over-expressed proteins probably play an important role in drug resistance development, and further studies on drug resistance mechanisms could provide more details. We also believe that these over-expressed proteins could be used as biomarkers for early prediction of drug-resistance development.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265356091250519032548
2025-05-23
2026-01-05
Loading full text...

Full text loading...

References

  1. Global tuberculosis report2023Available from: https://iris.who.int/bitstream/handle/10665/379339/9789240101531-eng.pdf?sequence=1
  2. SinghS DeyB SachdevaKS Challenges in tuberculosis diagnosis and management: Recommendations of the expert panel.J Lab Physicians201571001310.4103/0974‑2727.154778 25949051
    [Google Scholar]
  3. SinghS. SinghJ. KumarS. Poor performance of serological tests in the diagnosis of pulmonary tuberculosis: Evidence from a contact tracing field study.PLoS One2012774021310.1371/journal.pone.0040213 22808119
    [Google Scholar]
  4. LodhaL. MudliarS.R. SinghJ. Diagnostic performance of multiplex PCR for detection of Mycobacterium tuberculosis complex in presumptive pulmonary tuberculosis patients and its utility in smear negative specimens.J. Lab. Physicians202214440341110.1055/s‑0042‑1757231 36531543
    [Google Scholar]
  5. JenumS. DhanasekaranS. LodhaR. Approaching a diagnostic point-of-care test for pediatric tuberculosis through evaluation of immune biomarkers across the clinical disease spectrum.Sci. Rep.2016611852010.1038/srep18520 26725873
    [Google Scholar]
  6. SinghA. Kumar GuptaA. GopinathK. SharmaP. SinghS. Evaluation of 5 Novel protein biomarkers for the rapid diagnosis of pulmonary and extra-pulmonary tuberculosis: Preliminary results.Sci. Rep.2017714412110.1038/srep44121 28337993
    [Google Scholar]
  7. SinghJ. SankarM.M. KumarS. Incidence and prevalence of tuberculosis among household contacts of pulmonary tuberculosis patients in a peri-urban population of South Delhi, India.PLoS One2013876973010.1371/journal.pone.0069730 23922784
    [Google Scholar]
  8. PrajapatiS. UpadhyayK. MukherjeeA. High prevalence of primary drug resistance in children with intrathoracic tuberculosis in India.Paediatr. Int. Child Health201636321421810.1179/2046905515Y.0000000041 26052730
    [Google Scholar]
  9. ShrivasA. SinghS. SinghJ. Discordance in genotypic and phenotypic drug susceptibility results: Time to reconsider critical concentration of rifampicin.Microbiol. Spectr.2025133e02236e2410.1128/spectrum.02236‑24 39902977
    [Google Scholar]
  10. RufaiS.B. KumarP. SinghA. PrajapatiS. BalooniV. SinghS. Comparison of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis.J. Clin. Microbiol.20145261846185210.1128/JCM.03005‑13 24648554
    [Google Scholar]
  11. LiL.S. YangL. ZhuangL. YeZ.Y. ZhaoW.G. GongW.P. From immunology to artificial intelligence: Revolutionizing latent tuberculosis infection diagnosis with machine learning.Mil. Med. Res.20231015810.1186/s40779‑023‑00490‑8 38017571
    [Google Scholar]
  12. UnissaA.N. SubbianS. HannaL.E. SelvakumarN. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis.Infect. Genet. Evol.20164547449210.1016/j.meegid.2016.09.004 27612406
    [Google Scholar]
  13. SinghA. GuptaA.K. SinghS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis: Role of nanoparticles against multi-drug-resistant tuberculosis (MDR-TB). In: Saxena SK, Khurana SMP, EdsNanoBioMedicine. SaxenaS.K. KhuranaS.M.P. SingaporeSpringer202028531410.1007/978‑981‑32‑9898‑9_12
    [Google Scholar]
  14. SinghS. SinghA. GopinathK. SinghN. Deciphering the sequential events during in vivo acquisition of drug resistance in Mycobacterium tuberculosis.Int. J. Mycobacteriol.201431364010.1016/j.ijmyco.2013.10.006 26786220
    [Google Scholar]
  15. ZawM.T. EmranN.A. LinZ. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis.J. Infect. Public Health201811560561010.1016/j.jiph.2018.04.005 29706316
    [Google Scholar]
  16. SinghS. SinghA. GopinathK. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient with pulmonary tuberculosis turning from drug sensitive to multidrug resistant.Indian J. Med. Res.20151411274510.4103/0971‑5916.154492 25857493
    [Google Scholar]
  17. SharmaD KumarB LataM Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets.plos one20151010013941410.1371/journal.pone.0139414 26436944
    [Google Scholar]
  18. WangC. ZhangQ. WangY. Comparative proteomics analysis between biofilm and planktonic cells of Mycobacterium tuberculosis.Electrophoresis201940202736274610.1002/elps.201900030 31141184
    [Google Scholar]
  19. BespyatykhJ. SmolyakovA. GuliaevA. Proteogenomic analysis of Mycobacterium tuberculosis beijing B0/W148 cluster strains.J. Proteomics2019192192182610.1016/j.jprot.2018.07.002 30009986
    [Google Scholar]
  20. LataM SharmaD DeoN TiwariPK BishtD VenkatesanK Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates.J Proteomics2015127Pt A1142110.1016/j.jprot.2015.07.031
    [Google Scholar]
  21. LouwG.E. WarrenR.M. Gey van PittiusN.C. McEvoyC.R.E. Van HeldenP.D. VictorT.C. A balancing act: Efflux/influx in mycobacterial drug resistance.Antimicrob. Agents Chemother.20095383181318910.1128/AAC.01577‑08 19451293
    [Google Scholar]
  22. NimmoC. MillardJ. FaulknerV. MonteserinJ. PughH. JohnsonE.O. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era.Front. Cell. Infect. Microbiol.20221295407410.3389/fcimb.2022.954074 36275027
    [Google Scholar]
  23. AroraG. BothraA. ProsserG. AroraK. SajidA. Role of post‐translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis.FEBS J.2021288113375339310.1111/febs.15582 33021056
    [Google Scholar]
  24. NiuH. GuJ. ZhangY. Bacterial persisters: Molecular mechanisms and therapeutic development.Signal Transduct. Target. Ther.20249117410.1038/s41392‑024‑01866‑5 39013893
    [Google Scholar]
  25. GoossensS.N. SampsonS.L. Van RieA. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis.Clin. Microbiol. Rev.2020341e00141e2010.1128/CMR.00141‑20 33055230
    [Google Scholar]
  26. WilsonM. DeRisiJ. KristensenH.H. ImbodenP. RaneS. BrownP.O. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization.Proc. Natl. Acad. Sci.19999622128331283810.1073/pnas.96.22.12833
    [Google Scholar]
  27. WynnE.A. Dide-AgossouC. ReichlenM. RossmasslerK. Al MubarakR. ReidJ.J. Transcriptional adaptation of Mycobacterium tuberculosis that survives prolonged multi-drug treatment in mice.MBio2023146e023632310.1128/mbio.02363‑23
    [Google Scholar]
  28. ColangeliR. HelbD. VilchèzeC. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis.PLoS Pathog.2007368710.1371/journal.ppat.0030087 17590082
    [Google Scholar]
  29. KayaH. ErsoyL. ÜlgerM. BozokT. AslanG. Investigation of efflux pump genes in isoniazid resistant Mycobacterium tuberculosis isolates.Indian J. Med. Microbiol.20234610042810.1016/j.ijmmb.2023.100428 37945121
    [Google Scholar]
  30. ComasI. BorrellS. RoetzerA. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes.Nat. Genet.201244110611010.1038/ng.1038 22179134
    [Google Scholar]
  31. ZhangX. SuZ. ZhangX. Generation of Mycobacterium tuberculosis-specific recombinant antigens and evaluation of the clinical value of antibody detection for serological diagnosis of pulmonary tuberculosis.Int. J. Mol. Med.201331375175710.3892/ijmm.2013.1254 23338746
    [Google Scholar]
  32. JiangX. ZhangW. GaoF. HuangY. LvC. WangH. Comparison of the proteome of isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis.Microb. Drug Resist.2006124231238 17227207
    [Google Scholar]
  33. SinghA. GuptaA.K. GopinathK. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis sensitive and resistant Beijing type from a patient with pulmonary tuberculosis.Int. J. Mycobacteriol.20165Suppl. 1S123S12410.1016/j.ijmyco.2016.10.028 28043501
    [Google Scholar]
  34. BishtD. SharmaD. SharmaD. SinghR. GuptaV.K. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic.Expert Rev. Proteomics201916544345610.1080/14789450.2019.1608185
    [Google Scholar]
  35. SharmaD. BishtD. Secretory proteome analysis of streptomycin-resistant Mycobacterium tuberculosis clinical isolates.SLAS Discov.201722101229123810.1177/2472555217698428
    [Google Scholar]
  36. KumarG. ShankarH. SharmaD. Proteomics of culture filtrate of prevalent Mycobacterium tuberculosis Strains: 2D-PAGE map and MALDI-TOF/MS analysis.SLAS Discov.20172291142114910.1177/2472555217717639
    [Google Scholar]
  37. KrishnakumariammaK. EllappanK. KadhiravanT. Transcriptomic and proteomic analyses of Mycobacterium tuberculosis strains isolated from tuberculous meningitis patients.Int. J. Mycobacteriol.2023124420428 38149538
    [Google Scholar]
  38. Rodríguez-HernándezE. Quintas-GranadosL.I. Flores-VillalvaS. Cantó-AlarcónJ.G. Milián-SuazoF. Application of antigenic biomarkers for Mycobacterium tuberculosis.J. Zhejiang Univ. Sci. B2020211185687010.1631/jzus.B2000325 33150770
    [Google Scholar]
  39. SableS.B. PoseyJ.E. ScribaT.J. Tuberculosis vaccine development: Progress in clinical evaluation.Clin. Microbiol. Rev.2019331e00100e0011910.1128/CMR.00100‑19 31666281
    [Google Scholar]
  40. YangH. LeiX. ChaiS. SuG. DuL. From pathogenesis to antigens: The key to shaping the future of TB vaccines.Front. Immunol.202415144093510.3389/fimmu.2024.1440935 39108269
    [Google Scholar]
  41. ShenH. WangC. YangE. Novel recombinant BCG coexpressing Ag85B, ESAT-6 and mouse TNF-α induces significantly enhanced cellular immune and antibody responses in C57BL/6 mice.Microbiol. Immunol.201054843544110.1111/j.1348‑0421.2010.00232.x 20646207
    [Google Scholar]
  42. BellC. SmithG.T. SweredoskiM.J. HessS. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography] ] mass spectrometry-based proteomics techniques: A comprehensive resource for tuberculosis research.J. Proteome Res.201211111913010.1021/pr2007939 22053987
    [Google Scholar]
  43. JiaL. CowardL. GormanG.S. NokerP.E. TomaszewskiJ.E. Pharmacoproteomic effects of isoniazid, ethambutol, and N-geranyl-N'-(2-adamantyl)ethane-1,2-diamine (SQ109) on Mycobacterium tuberculosis H37Rv.J. Pharmacol. Exp. Ther.2005315290591110.1124/jpet.105.087817 16085758
    [Google Scholar]
  44. SharmaP. KumarB. GuptaY. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis.Proteome Sci.2010815910.1186/1477‑5956‑8‑59 21083941
    [Google Scholar]
  45. BrudeyK. DriscollJ.R. RigoutsL. Mycobacterium tuberculosis complex genetic diversity: Mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology.BMC Microbiol.2006612310.1186/1471‑2180‑6‑23 16519816
    [Google Scholar]
  46. DemayC. LiensB. BurguièreT. SITVITWEB – A publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology.Infect. Genet. Evol.201212475576610.1016/j.meegid.2012.02.004 22365971
    [Google Scholar]
  47. SupplyP. MarceauM. MangenotS. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis.Nat. Genet.201345217217910.1038/ng.2517 23291586
    [Google Scholar]
  48. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  49. GörgA. ObermaierC. BoguthG. The current state of two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis20002161037105310.1002/(SICI)1522‑2683(20000401)21:6<1037:AID‑ELPS1037>3.0.CO;2‑V 10786879
    [Google Scholar]
  50. AltschulS.F. GishW. MillerW. MyersE.W. LipmanD.J. Basic local alignment search tool.J. Mol. Biol.1990215340341010.1016/S0022‑2836(05)80360‑2 2231712
    [Google Scholar]
  51. Schneidman-DuhovnyD InbarY NussinovR WolfsonHJ Patch Dock and SymmDock: Servers for rigid and symmetric docking.Nucleic Acids Res200533Web ServerW363710.1093/nar/gki481 15980490
    [Google Scholar]
  52. AndrusierN. NussinovR. WolfsonH.J. FireDock: Fast interaction refinement in molecular docking.Proteins200769113915910.1002/prot.21495 17598144
    [Google Scholar]
  53. MashiachE Schneidman-DuhovnyD AndrusierN NussinovR WolfsonHJ FireDock: A web server for fast interaction refinement in molecular docking.Nucleic Acids Res200836Web ServerW2293210.1093/nar/gkn186 18424796
    [Google Scholar]
  54. LiuZ. MaQ. CaoJ. GaoX. RenJ. XueY. GPS-PUP: Computational prediction of pupylation sites in prokaryotic proteins.Mol. Biosyst.20117102737274010.1039/c1mb05217a 21850344
    [Google Scholar]
  55. SharmaD. BishtD. An efficient and rapid method for enrichment of lipophilic proteins from Mycobacterium tuberculosis H37Rv for two-dimensional gel electrophoresis.Electrophoresis20163791187119010.1002/elps.201600025 26935602
    [Google Scholar]
  56. KumarB. SharmaD. SharmaP. KatochV.M. VenkatesanK. BishtD. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin.J. Proteomics201394687710.1016/j.jprot.2013.08.025 24036035
    [Google Scholar]
  57. LodesM.J. DillonD.C. MohamathR. Serological expression cloning and immunological evaluation of MTB48, a novel Mycobacterium tuberculosis antigen.J. Clin. Microbiol.20013972485249310.1128/JCM.39.7.2485‑2493.2001 11427558
    [Google Scholar]
  58. WangJ. GeP. LeiZ. Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity.EMBO Rep.20212265217510.15252/embr.202052175 33938130
    [Google Scholar]
  59. LougheedK.E.A. OsborneS.A. SaxtyB. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents.Tuberculosis201191427728610.1016/j.tube.2011.03.005 21482481
    [Google Scholar]
  60. RieckB. DegiacomiG. ZimmermannM. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis.PLoS Pathog.2017135100639910.1371/journal.ppat.1006399 28545104
    [Google Scholar]
  61. KhanM.Z. BhaskarA. UpadhyayS. Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions.J. Biol. Chem.201729239160931610810.1074/jbc.M117.797563 28821621
    [Google Scholar]
  62. GurvitzA. The essential mycobacterial genes, fabG1 and fabG4, encode 3-oxoacyl-thioester reductases that are functional in yeast mitochondrial fatty acid synthase type 2.Mol. Genet. Genomics2009282440741610.1007/s00438‑009‑0474‑2 19685079
    [Google Scholar]
  63. SassettiC.M. BoydD.H. RubinE.J. Genes required for mycobacterial growth defined by high density mutagenesis.Mol. Microbiol.2003481778410.1046/j.1365‑2958.2003.03425.x 12657046
    [Google Scholar]
  64. SharmaP. KumarB. SinghalN. Streptomycin induced protein expression analysis in Mycobacterium tuberculosis by two-dimensional gel electrophoresis & mass spectrometry.Indian J. Med. Res.2010132400408 20966518
    [Google Scholar]
  65. JadejaD. DograN. AryaS. SinghG. SinghG. KaurJ. Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its Probable Role in Xenobiotic Degradation.J. Cell. Biochem.2016117239040110.1002/jcb.25285 26212120
    [Google Scholar]
  66. SunM. GeS. LiZ. The role of phosphorylation and acylation in the regulation of drug resistance in Mycobacterium tuberculosis.Biomedicines20221010259210.3390/biomedicines10102592 36289854
    [Google Scholar]
  67. VenturaM. RieckB. BoldrinF. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis.Mol. Microbiol.201390235636610.1111/mmi.12368 23962235
    [Google Scholar]
  68. SinghalN. SharmaP. KumarM. JoshiB. BishtD. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates.Proteome Sci.20121011410.1186/1477‑5956‑10‑14 22375954
    [Google Scholar]
  69. KapoorY. KhuranaH. ChakrabortyA. Wag31, a membrane tether, is crucial for lipid homeostasis in mycobacteria.eLife20251810.7554/eLife.104268.1
    [Google Scholar]
  70. ProvvediR. BoldrinF. FalcianiF. PalùG. ManganelliR. Global transcriptional response to vancomycin in Mycobacterium tuberculosis.Microbiology200915541093110210.1099/mic.0.024802‑0 19332811
    [Google Scholar]
  71. ArmstrongR.M. AdamsK.L. ZilischJ.E. Rv2744c is a pspa ortholog that regulates lipid droplet homeostasis and nonreplicating persistence in Mycobacterium tuberculosis.J. Bacteriol.2016198111645166110.1128/JB.01001‑15 27002134
    [Google Scholar]
  72. HameedH.M.A. IslamM.M. ChhotarayC. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains.Front. Cell. Infect. Microbiol.2018811410.3389/fcimb.2018.00114 29755957
    [Google Scholar]
  73. SheeS. VeetilR.T. MohanrajK. Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis.eLife2023128021810.7554/eLife.80218 37642294
    [Google Scholar]
  74. HeindorfM. KadariM. HeiderC. SkiebeE. WilharmG. Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics.PLoS One20149710103310.1371/journal.pone.0101033 25000585
    [Google Scholar]
  75. MushtaqK. SheikhJ.A. AmirM. KhanN. SinghB. AgrewalaJ.N. Rv2031c of Mycobacterium tuberculosis: A master regulator of Rv2028–Rv2031 (HspX) operon.Front. Microbiol.2015635110.3389/fmicb.2015.00351 25964780
    [Google Scholar]
  76. BurnsK.E. PearceM.J. DarwinK.H. Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates.J. Bacteriol.2010192112933293510.1128/JB.01639‑09 20233925
    [Google Scholar]
  77. DarwinK.H. EhrtS. Gutierrez-RamosJ.C. WeichN. NathanC.F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.Science200330256521963196610.1126/science.1091176 14671303
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265356091250519032548
Loading
/content/journals/iddt/10.2174/0118715265356091250519032548
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 2D-gel electrophoresis; Beijing genotype; docking; mass spectrometry; MDR-TB; Proteomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test