Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Introduction

Over the past four years, SARS-CoV-2 and COVID-19 have become global health crises, spurring extensive research on virus behavior, complications, and treatments. The virus interacts with a component of the renin-angiotensin system (RAS), altering inflammatory, hypertrophic, and hemodynamic responses binding to ACE2 found in organs like the heart, lungs, and kidneys.

Objective

This review explores the RAS-COVID-19 interplay, focusing on key molecules like ACE2, Ang-(1-7), and Ang-(1-9), influencing susceptibility, severity, and treatments. It seeks to clarify ACE2's dual role in viral entry and protection and assess the therapeutic potential of balancing Ang-(1-7) and Ang-(1-9) to prevent disease progression and related complications.

Methods

Studies were chosen through a systematic search in databases, such as PubMed, Scopus, and Web of Science. The inclusion criteria were centered on peer-reviewed research that explored the relationship between SARS-CoV-2 and important RAS molecules, including ACE2, Ang-(1–7), and Ang-(1-9), seeking information on therapies, severity, and susceptibility. Non-peer-reviewed articles and those lacking focus on RAS-COVID-19 interplay were excluded. Titles and abstracts were screened, followed by full-text assessment and data extraction for analysis.

Results

Some studies indicate that the peptides Ang-(1-7) and Ang-(1-9) could provide protective effects against heart-related complications by counteracting the harmful impacts of the angiotensin II pathway, which is often exacerbated by SARS-CoV-2. Ang-(1-7) and Ang-(1-9) are recognized for promoting vasodilation, reducing inflammation, and preventing fibrosis, which can mitigate the heart damage typically associated with COVID-19.

Discussion

ACE2, a component of the non-canonical RAS, is closely linked to SARS-CoV-2 and plays a pivotal role in the pathophysiology of COVID-19. Ang-(1-9) and Ang-(1-7) are produced by ACE2 and have demonstrated positive cardiovascular effects. In the context of COVID-19, Ang-(1-7) has shown protective effects in preclinical studies and clinical trials; however, more evidence is needed to support this effect.

Conclusion

Further research, including clinical trials, is vital to understand and develop precise therapies for COVID-19 and similar infectious diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265352715250717101135
2025-07-30
2026-01-05
Loading full text...

Full text loading...

/deliver/fulltext/iddt/25/7/IDDT-25-7-07.html?itemId=/content/journals/iddt/10.2174/0118715265352715250717101135&mimeType=html&fmt=ahah

References

  1. Palacios CruzM. SantosE. Velázquez CervantesM.A. León JuárezM. COVID-19, a worldwide public health emergency.Rev Clin Esp20212211556110.1016/j.rce.2020.03.001
    [Google Scholar]
  2. UmakanthanS. SahuP. RanadeA.V. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19).Postgrad. Med. J.2020961142753758 32563999
    [Google Scholar]
  3. Faisal YounusS. Qassim Jawell OdahA. Knowledge of new nursing college alumni concerning complications of COVID-19.Rawal Med. J.202348357657910.5455/rmj.20230904104203
    [Google Scholar]
  4. LiQ. GuanX. WuP. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia.N. Engl. J. Med.20203821311991207 31995857
    [Google Scholar]
  5. ChenN. ZhouM. DongX. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet202039510223507513 32007143
    [Google Scholar]
  6. XuH. ZhongL. DengJ. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa.Int. J. Oral Sci.20201218 32094336
    [Google Scholar]
  7. WanY. ShangJ. GrahamR. BaricR.S. LiF. Receptor recognition by the novel coronavirus from wuhan: An analysis based on decade-long structural studies of SARS coronavirus.J. Virol.2020947e00127e2010.1128/JVI.00127‑20 31996437
    [Google Scholar]
  8. RidenhourB. KowalikJ.M. ShayD.K. El número reproductivo básico (R0): Consideraciones para su aplicación en la salud publica.Am. J. Public Health2018108S6S455S465
    [Google Scholar]
  9. ForresterS.J. BoozG.W. SigmundC.D. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology.Physiol. Rev.20189831627173810.1152/physrev.00038.2017 29873596
    [Google Scholar]
  10. Paz OcaranzaM. RiquelmeJ.A. GarcíaL. Counter-regulatory renin–angiotensin system in cardiovascular disease.Nat. Rev. Cardiol.202017211612910.1038/s41569‑019‑0244‑8 31427727
    [Google Scholar]
  11. BianJ. LiZ. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator.Acta Pharm. Sin. B202111111210.1016/j.apsb.2020.10.006 33072500
    [Google Scholar]
  12. MohamadianM. ChitiH. ShoghliA. BiglariS. ParsamaneshN. EsmaeilzadehA. COVID‐19: Virology, biology and novel laboratory diagnosis.J. Gene Med.2021232330310.1002/jgm.3303 33305456
    [Google Scholar]
  13. CoronavirusW.H.O. WHO COVID-19 dashboard.2025Available from: https://covid19.who.int/
    [Google Scholar]
  14. ParaskevisD. KostakiE.G. MagiorkinisG. PanayiotakopoulosG. SourvinosG. TsiodrasS. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event.Infect. Genet. Evol.20207910421210.1016/j.meegid.2020.104212 32004758
    [Google Scholar]
  15. FernandesQ. InchakalodyV.P. MerhiM. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines.Ann. Med.202254152454010.1080/07853890.2022.2031274 35132910
    [Google Scholar]
  16. Bryce-MoncloaA Bryce-AlbertiM Portmann-BaraccoA Urquiaga-CalderónJ Larrauri-VignaC Alegría-ValdiviaE. [COVID-19 from a cardiovascular perspective].Arch Cardiol Mex202191Suplemento COVID0869410.24875/ACM.20000304
    [Google Scholar]
  17. GoldsmithC.S. TattiK.M. KsiazekT.G. Ultrastructural characterization of SARS coronavirus.Emerg. Infect. Dis.200410232032610.3201/eid1002.030913 15030705
    [Google Scholar]
  18. BeyerstedtS. CasaroE.B. RangelÉ.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection.Eur. J. Clin. Microbiol. Infect. Dis.202140590591910.1007/s10096‑020‑04138‑6 33389262
    [Google Scholar]
  19. AlsharifW. QurashiA. Effectiveness of COVID-19 diagnosis and management tools: A review.Radiography202127268268710.1016/j.radi.2020.09.010 33008761
    [Google Scholar]
  20. LauerS.A. GrantzK.H. BiQ. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application.Ann. Intern. Med.2020172957758210.7326/M20‑0504 32150748
    [Google Scholar]
  21. OchaniR. AsadA. YasminF. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management.Infez. Med.20212912036 33664170
    [Google Scholar]
  22. WiersingaW.J. RhodesA. ChengA.C. PeacockS.J. PrescottH.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19).JAMA2020324878279310.1001/jama.2020.12839 32648899
    [Google Scholar]
  23. Vargas VargasR.A. Varela MillánJ.M. Fajardo BonillaE. Renin–angiotensin system: Basic and clinical aspects—A general perspective.Endocrinol. Diabetes Nutr.2022691526210.1016/j.endinu.2021.05.012 34723133
    [Google Scholar]
  24. SparksM.A. CrowleyS.D. GurleyS.B. MirotsouM. CoffmanT.M. Classical renin-angiotensin system in kidney physiology.Compr. Physiol.20144312011228 24944035
    [Google Scholar]
  25. LiXC ZhangJ ZhuoJL The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseasesPharmacol Res2017125Pt A213810.1016/j.phrs.2017.06.005
    [Google Scholar]
  26. SturrockB.R.H. MilneK.M. ChevassutT.J.T. The renin–angiotensin system – a therapeutic target in COVID-19?Clin. Med.2020204e72e7510.7861/clinmed.2020‑0146 32414711
    [Google Scholar]
  27. SilholF. SarlonG. DeharoJ.C. VaïsseB. Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: Should we block the renin–angiotensin system?Hypertens. Res.202043885485610.1038/s41440‑020‑0476‑3 32439915
    [Google Scholar]
  28. AlmutlaqM. AlamroA.A. AlroqiF. BarhoumiT. Classical and counter-regulatory renin–angiotensin system: Potential key roles in COVID-19 pathophysiology.CJC Open2021381060107410.1016/j.cjco.2021.04.004 33875979
    [Google Scholar]
  29. LaghlamD. JozwiakM. NguyenL.S. Renin–angiotensin–aldosterone system and immunomodulation: A state-of-the-art review.Cells2021107176710.3390/cells10071767 34359936
    [Google Scholar]
  30. ChenH. PengJ. WangT. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic.Biochem. Pharmacol.202320811537010.1016/j.bcp.2022.115370 36481346
    [Google Scholar]
  31. TipnisS.R. HooperN.M. HydeR. KarranE. ChristieG. TurnerA.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase.J. Biol. Chem.200027543332383324310.1074/jbc.M002615200 10924499
    [Google Scholar]
  32. ScialoF. DanieleA. AmatoF. ACE2: The major cell entry receptor for SARS-CoV-2.Lung2020198686787710.1007/s00408‑020‑00408‑4 33170317
    [Google Scholar]
  33. RiceG.I. ThomasD.A. GrantP.J. TurnerA.J. HooperN.M. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.Biochem. J.20043831455110.1042/BJ20040634 15283675
    [Google Scholar]
  34. SeyedmehdiS.M. ImanparastF. MohagheghP. Patients with severe COVID‐19 have reduced circulating levels of angiotensin‐(1–7): A cohort study.Health Sci. Rep.20225256410.1002/hsr2.564 35308416
    [Google Scholar]
  35. OcaranzaM.P. MoyaJ. BarrientosV. Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis.J. Hypertens.201432477178310.1097/HJH.0000000000000094 24463937
    [Google Scholar]
  36. OcaranzaM.P. LavanderoS. JalilJ.E. Angiotensin-(1–9) regulates cardiac hypertrophy in vivo and in vitro.J. Hypertens.20102851054106410.1097/HJH.0b013e328335d291 20411619
    [Google Scholar]
  37. PannucciP. JeffersonS.R. HampshireJ. CooperS.L. HillS.J. WoolardJ. COVID-19-induced myocarditis: Pathophysiological roles of ACE2 and toll-like receptors.Int. J. Mol. Sci.2023246537410.3390/ijms24065374 36982447
    [Google Scholar]
  38. ZhongJ. BasuR. GuoD. ChowF.L. ByrnsS. SchusterM. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction.Circulation201012271810.1161/CIRCULATIONAHA.110.955369
    [Google Scholar]
  39. IndeZ. CrokerB.A. YappC. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity.Sci. Adv.2021734eabf860910.1126/sciadv.abf8609 34407940
    [Google Scholar]
  40. XuC.S. YangW.X. ACE2 in male genitourinary and endocrine systems: Does COVID-19 really affect these systems?Histol. Histopathol.2023383261272 36069179
    [Google Scholar]
  41. BaderM. TurnerA.J. AleninaN. ACE2, a multifunctional protein – from cardiovascular regulation to COVID-19.Clin. Sci.2020134233229323210.1042/CS20201493 33305790
    [Google Scholar]
  42. ParkG.C. BangS.Y. LeeH.W. ACE2 and TMPRSS2 immunolocalization and oral manifestations of COVID‐19.Oral Dis.202228S22456246410.1111/odi.14126 35000261
    [Google Scholar]
  43. Torrens-MasM. Perelló-ReusC.M. Trias-FerrerN. GDF15 and ACE2 stratify COVID-19 patients according to severity while ACE2 mutations increase infection susceptibility.Front. Cell. Infect. Microbiol.20221294295110.3389/fcimb.2022.942951 35937703
    [Google Scholar]
  44. DanielG. PaolaA.R. NancyG. Epigenetic mechanisms and host factors impact ACE2 gene expression: Implications in COVID-19 susceptibility.Infect. Genet. Evol.202210410535710.1016/j.meegid.2022.105357 36038007
    [Google Scholar]
  45. MazaM.C. ÚbedaM. DelgadoP. ACE2 serum levels as predictor of infectability and outcome in COVID-19.Front. Immunol.20221383651610.3389/fimmu.2022.836516 35401548
    [Google Scholar]
  46. WallentinL. LindbäckJ. ErikssonN. Angiotensin-converting enzyme 2 (ACE2) levels in relation to risk factors for COVID-19 in two large cohorts of patients with atrial fibrillation.Eur. Heart J.202041414037404610.1093/eurheartj/ehaa697 32984892
    [Google Scholar]
  47. ElrayessM. ZedanT. AlattarA. Soluble ACE2 and angiotensin II levels are modulated in hypertensive COVID-19 patients treated with different antihypertension drugs.Blood Press.2022311809010.1080/08037051.2022.2055530
    [Google Scholar]
  48. FilesD.C. GibbsK.W. SchaichC.L. A pilot study to assess the circulating renin-angiotensin system in COVID-19 acute respiratory failure.Am. J. Physiol. Lung Cell. Mol. Physiol.20213211L213L21810.1152/ajplung.00129.2021 34009036
    [Google Scholar]
  49. SheteA. Urgent need for evaluating agonists of angiotensin-(1-7)/Mas receptor axis for treating patients with COVID-19.Int. J. Infect. Dis.20209634835110.1016/j.ijid.2020.05.002 32389847
    [Google Scholar]
  50. MéryG. EpaulardO. BorelA.L. ToussaintB. Le GouellecA. COVID-19: Underlying adipokine storm and angiotensin 1-7 umbrella.Front. Immunol.202011171410.3389/fimmu.2020.01714 32793244
    [Google Scholar]
  51. ParasherA. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment.Postgrad. Med. J.202197114731232010.1136/postgradmedj‑2020‑138577 32978337
    [Google Scholar]
  52. GavriatopoulouM. KorompokiE. FotiouD. Organ-specific manifestations of COVID-19 infection.Clin. Exp. Med.202020449350610.1007/s10238‑020‑00648‑x 32720223
    [Google Scholar]
  53. Almadana PachecoV. Marín BarreraL. Ríos VillegasM.J. Valido MoralesA.S. Valoración de secuelas clínica, radiológicas y funcionales en pacientes supervivientes de neumonía por SARS-CoV-2.Aten. Primaria202153810208310.1016/j.aprim.2021.102083 34000461
    [Google Scholar]
  54. KangY. ChenT. MuiD. Cardiovascular manifestations and treatment considerations in COVID-19.Heart2020106151132114110.1136/heartjnl‑2020‑317056 32354800
    [Google Scholar]
  55. BehzadS. AghaghazviniL. RadmardA.R. GholamrezanezhadA. Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview.Clin. Imaging202066354110.1016/j.clinimag.2020.05.013 32425338
    [Google Scholar]
  56. GuptaA. MadhavanM.V. SehgalK. Extrapulmonary manifestations of COVID-19.Nat. Med.20202671017103210.1038/s41591‑020‑0968‑3 32651579
    [Google Scholar]
  57. BatlleD. WysockiJ. SatchellK. Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy?Clin. Sci.2020134554354510.1042/CS20200163 32167153
    [Google Scholar]
  58. YiC. SunX. YeJ. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies.Cell. Mol. Immunol.202017662163010.1038/s41423‑020‑0458‑z 32415260
    [Google Scholar]
  59. LeeM.H. LiH.J. WasuwanichP. COVID‐19 susceptibility and clinical outcomes in inflammatory bowel disease: An updated systematic review and meta‐analysis.Rev. Med. Virol.2023332241410.1002/rmv.2414 36504172
    [Google Scholar]
  60. ChoK. ParkS. KimE.Y. Immunogenicity of COVID‐19 vaccines in patients with diverse health conditions: A comprehensive systematic review.J. Med. Virol.20229494144415510.1002/jmv.27828 35567325
    [Google Scholar]
  61. CarpenterR.M. YoungM.K. PetriW.A.O. Repressed ang 1–7 in COVID-19 is inversely associated with inflammation and coagulation.MSphere202274e00220-2210.1128/msphere.00220‑22 35913134
    [Google Scholar]
  62. RostamzadehF. NajafipourH. NakhaeiS. YazdaniR. LangariA.A. Low Ang-(1–7) and high des-Arg9 bradykinin serum levels are correlated with cardiovascular risk factors in patients with COVID-19.Open Med.20231812023074110.1515/med‑2023‑0741 37415613
    [Google Scholar]
  63. ChappellM.C. Renin-angiotensin system and sex differences in COVID-19: A critical assessment.Circ. Res.2023132101320133710.1161/CIRCRESAHA.123.321883 37167353
    [Google Scholar]
  64. WagenerG. GoldklangM.P. GerberA. A randomized, placebo-controlled, double-blinded pilot study of angiotensin 1-7 (TXA-127) for the treatment of severe COVID-19.Crit. Care2022261229 35902867
    [Google Scholar]
  65. ElshafeiA. KhidrE.G. El-HusseinyA.A. GomaaM.H. RAAS, ACE2 and COVID-19; a mechanistic review.Saudi J. Biol. Sci.202128116465647010.1016/j.sjbs.2021.07.003 34305426
    [Google Scholar]
  66. PeiróC. MoncadaS. Substituting angiotensin-(1-7) to prevent lung damage in SARS-CoV-2 infection?Circulation2020141211665166610.1161/CIRCULATIONAHA.120.047297 32242749
    [Google Scholar]
  67. JiangF. YangJ. ZhangY. Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets.Nat. Rev. Cardiol.201411741342610.1038/nrcardio.2014.59 24776703
    [Google Scholar]
  68. MedinaD. ArnoldA.C. Angiotensin-(1-7): Translational avenues in cardiovascular control.Am. J. Hypertens.201932121133114210.1093/ajh/hpz146 31602467
    [Google Scholar]
  69. PatelV.B. ZhongJ-C. GrantM.B. OuditG.Y. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure.Circ. Res.201611881313132610.1161/CIRCRESAHA.116.307708
    [Google Scholar]
  70. GheblawiM. WangK. ViveirosA. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system.Circ. Res.2020126101456147410.1161/CIRCRESAHA.120.317015 32264791
    [Google Scholar]
  71. Rodrigues PrestesT.R. RochaN.P. MirandaA.S. TeixeiraA.L. Simoes-E-Silva AC. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: Evidence from basic and clinical research.Curr. Drug Targets2017181113011313 27469342
    [Google Scholar]
  72. SahrA. WolkeC. MaczewskyJ. The angiotensin-(1–7)/mas axis IMPROVES pancreatic β-cell function in vitro and in vivo.Endocrinology20161571246774690 27715254
    [Google Scholar]
  73. SchinzariF. TesauroM. VenezianiA. MoresN. Di DanieleN. CardilloC. Favorable vascular actions of angiotensin-(1–7) in human obesity.Hypertension201871118519110.1161/HYPERTENSIONAHA.117.10280 29203627
    [Google Scholar]
  74. VerdecchiaP. CavalliniC. SpanevelloA. AngeliF. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection.Eur. J. Intern. Med.202076142010.1016/j.ejim.2020.04.037 32336612
    [Google Scholar]
  75. TikellisC. ThomasM.C. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease.Int. J. Pept.202020201219 22536270
    [Google Scholar]
  76. SouthA.M. DizD.I. ChappellM.C. COVID-19, ACE2, and the cardiovascular consequences.Am. J. Physiol. Heart Circ. Physiol.20203185H1084H109010.1152/ajpheart.00217.2020 32228252
    [Google Scholar]
  77. SantosR.A.S. OuditG.Y. Verano-BragaT. CantaG. SteckelingsU.M. BaderM. The renin-angiotensin system: Going beyond the classical paradigms.Am. J. Physiol. Heart Circ. Physiol.20193165H958H97010.1152/ajpheart.00723.2018 30707614
    [Google Scholar]
  78. AliM.U. ZafarA. TanveerJ. Deep learning network selection and optimized information fusion for enhanced COVID‐19 detection.Int. J. Imaging Syst. Technol.20243422300110.1002/ima.23001
    [Google Scholar]
  79. IqbalM.S. NaqviR.A. AlizadehsaniR. HussainS. MoqurrabS.A. LeeS.W. An adaptive ensemble deep learning framework for reliable detection of pandemic patients.Comput. Biol. Med.2024168107836 38086139
    [Google Scholar]
  80. AbidinZ.U. NaqviR.A. HaiderA. KimH.S. JeongD. LeeS.W. Recent deep learning-based brain tumor segmentation models using multi-modality magnetic resonance imaging: A prospective survey.Front. Bioeng. Biotechnol.202412139280710.3389/fbioe.2024.1392807 39104626
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265352715250717101135
Loading
/content/journals/iddt/10.2174/0118715265352715250717101135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test