Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Objective

This study aimed to assess the safety and efficacy of tissue Plasminogen Activator (tPA) in patients with COVID-19-induced severe Acute Respiratory Distress Syndrome (ARDS).

Methods

The intervention group consisted of eligible patients with severe ARDS due to COVID-19 admitted to the Intensive Care Unit (ICU) of a university hospital. We selected the control group from admitted patients treated in the same ICU within the same period. The intervention group received intravenous tPA as 10 mg stat, 40 mg over the first 2 hours, and 25-50 mg over the next 10 hours, followed by a therapeutic dose of enoxaparin. The control group only received the therapeutic dose of enoxaparin. The main outcomes were the rise of SpO within 24 hours of tPA administration, critical bleeding during tPA administration, 28-day in-hospital mortality following admission to the ICU, and length of stay in the ICU.

Results and Discussion

We analyzed two sets of 15 patients in the intervention (mean age: 45 years, 73% male) and the control (mean age: 50 years, 53% male) groups. There was a rapid relief of dyspnea and SpO rising within 24 hours in seven cases (45%) only in the intervention group with no significant organ-threatening bleeding. Death was observed in 5 of the tPA-treated patients (33.3%) 10 (66.7%) of the controls (adjusted OR (95% CI): 0.17 (0.03, 0.98), value =0.068).

Conclusion

The administration of intravenous tPA as 10 mg stat, 40 mg during 2 hours, and 50 mg during the next 10 hours is safe, can cause a rapid relief of dyspnea, and be lifesaving in COVID-19-induced ARDS.

Clinical Trial Registration Number

IRCT20200415047080N1.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265331792241227173642
2025-01-28
2026-01-05
Loading full text...

Full text loading...

References

  1. WichmannD. SperhakeJ.P. LütgehetmannM. Autopsy findings and venous thromboembolism in patients with COVID-19.Ann. Intern. Med.2020173426827710.7326/M20‑2003 32374815
    [Google Scholar]
  2. AckermannM. VerledenS.E. KuehnelM. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19.N. Engl. J. Med.2020383212012810.1056/NEJMoa2015432 32437596
    [Google Scholar]
  3. Von MeijenfeldtF.A. HavervallS. AdelmeijerJ. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality.Res. Pract. Thromb. Haemost.20205113214110.1002/rth2.12462 33537537
    [Google Scholar]
  4. KlokF.A. KruipM.J.H.A. van der MeerN.J.M. Incidence of thrombotic complications in critically ill ICU patients with COVID-19.Thromb. Res.202019114514710.1016/j.thromres.2020.04.013 32291094
    [Google Scholar]
  5. ThachilJ. SrivastavaA. SARS-2 coronavirus-associated hemostatic lung abnormality in COVID-19: Is it pulmonary thrombosis or pulmonary embolism?Semin. Thromb. Hemost.202046777778010.1055/s‑0040‑1712155 32396963
    [Google Scholar]
  6. WrightF.L. VoglerT.O. MooreE.E. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 infection.J. Am. Coll. Surg.20202312193203e110.1016/j.jamcollsurg.2020.05.007 32422349
    [Google Scholar]
  7. Creel-BulosC. AuldS.C. Caridi-ScheibleM. Fibrinolysis shutdown and thrombosis in a COVID-19 ICU.Shock202155331632010.1097/SHK.0000000000001635 32769822
    [Google Scholar]
  8. NougierC. BenoitR. SimonM. Hypofibrinolytic state and high thrombin generation may play a major role in SARS‐CoV-2 associated thrombosis.J. Thromb. Haemost.20201892215221910.1111/jth.15016 32668058
    [Google Scholar]
  9. LiuC. MaY. SuZ. ZhaoR. ZhaoX. NieH-G. Meta-analysis of preclinical studies of fibrinolytic therapy for acute lung injury.Front. Immunol.20189189810.3389/fimmu.2018.01898 30177934
    [Google Scholar]
  10. Abdelaal Ahmed MahmoudA. MahmoudH.E. MahranM.A. KhaledM. Streptokinase versus unfractionated heparin nebulization in patients with severe acute respiratory distress syndrome (ARDS): A randomized controlled trial with observational controls.J. Cardiothorac. Vasc. Anesth.202034243644310.1053/j.jvca.2019.05.035 31262641
    [Google Scholar]
  11. DongY. CaoW. ChengX. Low-dose intravenous tissue plasminogen activator for acute ischaemic stroke: An alternative or a new standard?Stroke Vasc. Neurol.20161311512110.1136/svn‑2016‑000033 28959472
    [Google Scholar]
  12. BrandtK McGinnK QuedadoJ. Low-Dose Systemic Alteplase (tPA) for the treatment of pulmonary embolismAnn Pharmacother20154978182410.1177/1060028015579988 25857308
    [Google Scholar]
  13. ÖzkanM. ÇakalB. KarakoyunS. Thrombolytic therapy for the treatment of prosthetic heart valve thrombosis in pregnancy with low-dose, slow infusion of tissue-type plasminogen activator.Circulation2013128553254010.1161/CIRCULATIONAHA.113.001145 23812180
    [Google Scholar]
  14. GoyalA. SaigalS. NiwariyaY. SharmaJ. SinghP. Successful use of tPA for thrombolysis in COVID related ARDS: A case series.J. Thromb. Thrombolysis202151229329610.1007/s11239‑020‑02208‑2 32617806
    [Google Scholar]
  15. ArachchillageD.J. StaceyA. AkorF. ScotzM. LaffanM. Thrombolysis restores perfusion in COVID‐19 hypoxia.Br. J. Haematol.20201905e270e27410.1111/bjh.17050 32735730
    [Google Scholar]
  16. ChristieD.B. NemecH.M. ScottA.M. Early outcomes with utilization of tissue plasminogen activator in COVID-19–associated respiratory distress: A series of five cases.J. Trauma Acute Care Surg.202089344845210.1097/TA.0000000000002787 32427774
    [Google Scholar]
  17. BarrettC.D. Oren-GrinbergA. ChaoE. Rescue therapy for severe COVID-19-associated acute respiratory distress syndrome with tissue plasminogen activator: A case series.J. Trauma Acute Care Surg.202089345345710.1097/TA.0000000000002786 32427773
    [Google Scholar]
  18. WangJ. HajizadehN. MooreE.E. Tissue plasminogen activator (tPA) treatment for COVID‐19 associated acute respiratory distress syndrome (ARDS): A case series.J. Thromb. Haemost.20201871752175510.1111/jth.14828 32267998
    [Google Scholar]
  19. KosanovicD. YaroshetskiyA.I. TsarevaN.A. Recombinant tissue plasminogen activator treatment for COVID-19 associated ARDS and acute cor pulmonale.Int. J. Infect. Dis.202110410811010.1016/j.ijid.2020.12.043 33352323
    [Google Scholar]
  20. HashimZ GhatakT NathA SinghRK Role of low-dose tissue plasminogen activator in patients with refractory hypoxia due to presumed microthrombi in pulmonary vasculature in coronavirus disease 2019: A case series and review of the literature.Lung India39328629110.4103/lungindia.lungindia_530_21
    [Google Scholar]
  21. AminiS. Labbani-MotlaghZ. AliannejadR. PourabbasS.M. VaseiM. Case series of nebulizing r-tPA for COVID-19 induced acute respiratory distress syndrome.Clin. Case Rep.202210e628310.1002/ccr3.6283
    [Google Scholar]
  22. World Health Organization. Clinical management of severe acute respiratory infection [SARI] when COVID-19 disease is suspected: interim guidance, 13 March 2020 Geneva: World Health Organization, 2020 2020. Report No.: Contract No.: WHO/2019-nCoV/clinical/2020.4
    [Google Scholar]
  23. PaganaK.D. PaganaT.J. PaganaT.N. Mosby’s® Diagnostic and Laboratory Test Reference. Mosby’s® Diagnostic and Laboratory Test Reference.15th edSt. Louis, MOElsevier2020
    [Google Scholar]
  24. BarrettC. MooreH. MooreE. WangJ. HajizadehN. BifflW. LottenbergL. PatelP.R. TruittM.S. McIntyreR.C.Jr BullT.M. AmmonsL.A. GhasabyanA. ChandlerJ. DouglasI.S. SchmidtE.P. MooreP.K. WrightF.L. RamdoR. BorregoR. YaffeM.B. STudy of Alteplase for Respiratory Failure in SARS-CoV-2 COVID-19 [STARS]: A Vanguard Multicenter, Rapidly Adaptive, Pragmatic, Randomized, Controlled Trial.CHEST2022161371072710.1016/j.chest.2021.09.024
    [Google Scholar]
  25. ZuoY WarnockM HarbaughA YalavarthiS GockmanK ZuoM MadisonJA KnightJS KanthiY LawrenceDA 2021Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients.Sci Rep.2021111158010.1038/s41598‑020‑80010‑z
    [Google Scholar]
  26. StrengA.S. DelnoijT.S.R. MulderM.M.G. SelsJ.W.E.M. WetzelsR.J.H. VerhezenP.W.M. OlieR.H. KoomanJ.P. Van KuijkS.M.J. BrandtsL. CateH.T. LorussoR. Van der HorstI.C.C. Van BusselB.C.T. HenskensY.M.C. Monitoring of Unfractionated Heparin in Severe COVID-19: An Observational Study of Patients on CRRT and ECMO.TH Open202044e365e7510.1055/s‑0040‑1719083
    [Google Scholar]
  27. NovelliC. BorottoE. BeverinaI. PunziV. RadrizzaniD. BrandoB. Heparin dosage, level, and resistance in SARS-CoV2 infected patients in intensive care unit.Int. J. Lab. Hematol.20214361284129010.1111/ijlh.13543
    [Google Scholar]
  28. WhiteD. MacDonaldS. BullT. HaymanM. de Monteverde-RobbR. SapsfordD. LavinioA. VarleyJ. JohnstonA. BesserM. TomasW. Heparin resistance in COVID-19 patients in the intensive care unit.J. Thromb. Thrombolysis202050228729110.1007/s11239‑020‑02145‑0
    [Google Scholar]
  29. SamuelS. AllisonT.A. SharafS. YauG. RanjbarG. McKaigN. NguyenA. EscobarM. ChoiH.A. Antifactor Xa levels vs. activated partial thromboplastin time for monitoring unfractionated heparin. A pilot study.J. of clinic pharm and therapeutics.201641549950210.1111/jcpt.12415
    [Google Scholar]
  30. BeunR KusadasiN SikmaM WesterinkJ HuismanA Thromboembolic events and apparent heparin resistance in patients infected with SARS-CoV-2.Int J Lab Hematol202042 Suppl1[Suppl 1]192010.1111/ijlh.13230
    [Google Scholar]
  31. RashidiF. BarcoS. RezaeifarP. SadeghipourP. GhodratiS. BakhshandehH. Mousavi-AghdasA.S. SadeghiA. SharifiA. ValizdehH. MikaeiliH. RafieeF. NavarbafZ. FarajinG. MahmoodpoorA. BikdeliB. AnsarianK. Tissue plasminogen activator for the treatment of adults with critical COVID-19: A pilot randomized clinical trial.Thromb. Res.202221612512810.1016/j.thromres.2021.12.003
    [Google Scholar]
  32. BarrettC.D. MooreH.B. MooreE.E. Benjamin ChristieD.III OrfanosS. Anez-BustillosL. JhunjhunwalaR. HussainS. ShaefiS. WangJ. HajizadehN. Baedorf-KassisE.N. Al ShammaaA. CapersK. Banner-GoodspeedV. WrightF.L. BullT. MooreP.K. NemecH. BuchananJ.T. NonnemacherC. RajcooarN. RamdeoR. YacoubM. GuevaraA. EspinalA. HattarL. MoracoA. McIntyreR. TalmorD.S. SauaiaA. YaffeM.B. MUlticenter STudy of tissue plasminogen activator [alteplase] use in COVID-19 severe respiratory failure [MUST COVID]: A retrospective cohort study.Res. Pract. Thromb. Haemost.202262e1266910.1002/rth2.12669
    [Google Scholar]
  33. DouinD.J. ShaefiS. BrennerS.K. GuptaS. ParkI. WrightF.L. MathewK.S. ChanL. Al-SamkariH. OrfanosS. RadbelJ. LeafD.E. Tissue Plasminogen Activator in Critically Ill Adults with COVID-19.Ann. Am. Thorac. Soc.202118111917192110.1513/AnnalsATS.202102‑127RL
    [Google Scholar]
  34. BaltanE. SerinE. AvciB.Y. AkilliI.K. ÇinarA.S. The relationship between plasminogen activator inhibitor-1 levels and the course of disease in COVID-19 patients.Turk J Biochem202247567267910.1515/tjb‑2022‑0044
    [Google Scholar]
  35. YatsenkoT RiosR NogueiraT SalamaY TakahashiS TabeY NaitoT TakahashiK HattoriK HeissigB. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19Front Immunol202414129979210.3389/fimmu.2023.1299792
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265331792241227173642
Loading
/content/journals/iddt/10.2174/0118715265331792241227173642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test