Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Multicellular surface-attached populations of bacteria embedded in the extracellular matrix are known as biofilms. Bacteria generally preferred to grow as biofilms. Quorum sensing (QS), detection of density of cell population through gene regulation, has been found to play an important role in the production of biofilms. Biofilm formation can increase the severity of infections that can lead to morbidity or mortality. Bacteria living within biofilms have a higher pattern of adaptive resistance to antibiotics. Antibiotic resistance is a barrier in the treatment of biofilms-induced acute to chronic infections such as post-surgery infections, surgery-associated wound infections, endocarditis, joint infections, burn-related wound infections occurred, ventilator-associated pneumonia, . So it is urgent to discover or find out potent new drugs in fight against infectious diseases such as biofilms-associated infections. Medicinal plants or herbs are a rich source for fighting with biofilms-mediated infections. Phytochemicals have exhibited significant effects in the prevention of biofilms formation against different bacteria that are causing infections. Purified compounds such as berberine, tetrandrine, embelin, xanthorrhizol, bakuchiol, ., exhibited promising biofilm inhibition actions against different pathogenic bacteria. Plant extracts that contain several phytochemicals are evaluated for its biofilm’s inhibition property, and have shown significant potential in biofilm formation. Antibiofilm agents act by distinct mechanisms such as inhibiting the adherence of biofilms in a surface, preventing the biofilm formations, disrupting the matured biofilms, . This study is intended to reiterate about possibilities of plant extracts and purified compounds in the treatment of the prevention of bacterial biofilms-related infections.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265324950241204182204
2024-12-30
2025-12-04
Loading full text...

Full text loading...

References

  1. ToyofukuM. InabaT. KiyokawaT. ObanaN. YawataY. NomuraN. Environmental factors that shape biofilm formation.Biosci. Biotechnol. Biochem.201680171210.1080/09168451.2015.1058701 26103134
    [Google Scholar]
  2. HallC.W. MahT.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria.FEMS Microbiol. Rev.201741327630110.1093/femsre/fux010 28369412
    [Google Scholar]
  3. CostertonJ.W. GeeseyG.G. ChengK.J. How bacteria stick.Sci. Am.19782381869510.1038/scientificamerican0178‑86 635520
    [Google Scholar]
  4. WimpennyJ. ManzW. SzewzykU. Heterogeneity in biofilms: Table 1.FEMS Microbiol. Rev.200024566167110.1111/j.1574‑6976.2000.tb00565.x 11077157
    [Google Scholar]
  5. TeschlerJ.K. Zamorano-SánchezD. UtadaA.S. Living in the matrix: Assembly and control of Vibrio cholerae biofilms.Nat. Rev. Microbiol.201513525526810.1038/nrmicro3433 25895940
    [Google Scholar]
  6. UruénC. Chopo-EscuinG. TommassenJ. Mainar-JaimeR.C. ArenasJ. Biofilms as promoters of bacterial antibiotic resistance and tolerance.Antibiotics2020101310.3390/antibiotics10010003 33374551
    [Google Scholar]
  7. O’TooleG. KaplanH.B. KolterR. Biofilm formation as microbial development.Annu. Rev. Microbiol.2000541497910.1146/annurev.micro.54.1.49 11018124
    [Google Scholar]
  8. SauerK. CamperA.K. EhrlichG.D. CostertonJ.W. DaviesD.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm.J. Bacteriol.200218441140115410.1128/jb.184.4.1140‑1154.2002 11807075
    [Google Scholar]
  9. Southey-PilligC.J. DaviesD.G. SauerK. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.J. Bacteriol.2005187238114812610.1128/JB.187.23.8114‑8126.2005 16291684
    [Google Scholar]
  10. OttoM. Staphylococcal Biofilms.Curr. Top. Microbiol. Immunol.200832220722810.1007/978‑3‑540‑75418‑3_10 18453278
    [Google Scholar]
  11. MondsR.D. O’TooleG.A. The developmental model of microbial biofilms: Ten years of a paradigm up for review.Trends Microbiol.2009172738710.1016/j.tim.2008.11.001 19162483
    [Google Scholar]
  12. LópezD. VlamakisH. KolterR. Biofilms.Cold Spring Harb. Perspect. Biol.201027a00039810.1101/cshperspect.a000398 20519345
    [Google Scholar]
  13. CeriH. OlsonM.E. StremickC. ReadR.R. MorckD. BuretA. The calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms.J. Clin. Microbiol.19993761771177610.1128/JCM.37.6.1771‑1776.1999 10325322
    [Google Scholar]
  14. YassienM. KhardoriN. AhmedyA. ToamaM. Modulation of biofilms of Pseudomonas aeruginosa by quinolones.Antimicrob. Agents Chemother.199539102262226810.1128/AAC.39.10.2262 8619580
    [Google Scholar]
  15. MorckD.W. LamK. McKayS.G. Comparative evaluation of fleroxacin, ampicillin, trimethoprimsulfamethoxazole, and gentamicin as treatments of catheter-associated urinary tract infection in a rabbit model.Int. J. Antimicrob. Agents19944Suppl. 2S21S2710.1016/0924‑8579(94)90018‑3 18611629
    [Google Scholar]
  16. DaviesD. Understanding biofilm resistance to antibacterial agents.Nat. Rev. Drug Discov.20032211412210.1038/nrd1008 12563302
    [Google Scholar]
  17. JamalM. AhmadW. AndleebS. Bacterial biofilm and associated infections.J. Chin. Med. Assoc.201881171110.1016/j.jcma.2017.07.012 29042186
    [Google Scholar]
  18. OlsenI. Biofilm-specific antibiotic tolerance and resistance.Eur. J. Clin. Microbiol. Infect. Dis.201534587788610.1007/s10096‑015‑2323‑z 25630538
    [Google Scholar]
  19. MauriceN.M. BediB. SadikotR.T. Pseudomonas aeruginosa Biofilms: Host response and clinical implications in lung infections.Am. J. Respir. Cell Mol. Biol.201858442843910.1165/rcmb.2017‑0321TR 29372812
    [Google Scholar]
  20. GedefieA. DemsissW. BeleteM.A. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review.Infect. Drug Resist.2021143711371910.2147/IDR.S332051 34531666
    [Google Scholar]
  21. Moreau-MarquisS. StantonB.A. O’TooleG.A. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway.Pulm. Pharmacol. Ther.200821459559910.1016/j.pupt.2007.12.001 18234534
    [Google Scholar]
  22. HøibyN. BjarnsholtT. GivskovM. MolinS. CiofuO. Antibiotic resistance of bacterial biofilms.Int. J. Antimicrob. Agents201035432233210.1016/j.ijantimicag.2009.12.011 20149602
    [Google Scholar]
  23. GilbertP. Maira-LitranT. McBainA.J. RickardA.H. WhyteF.W. The physiology and collective recalcitrance of microbial biofilm communities.Adv. Microb. Physiol.20024620325610.1016/S0065‑2911(02)46005‑5 12073654
    [Google Scholar]
  24. RahimkhaniM. NikfallahA. SaberianM. Urinary tract infection in spinal cord injuries.Asian J. Pharm. Clin. Res.201472178182
    [Google Scholar]
  25. RahimkhaniM. GhofraniH. Helicobacter pylori and peptic ulcer in cirrhotic patients.Pak. J. Med. Sci.2008246849852
    [Google Scholar]
  26. KhanJ. TararS.M. GulI. NawazU. ArshadM. Challenges of antibiotic resistance biofilms and potential combating strategies: A review.BioTech202111416910.1007/s13205‑021‑02707‑w
    [Google Scholar]
  27. SharmaS. MohlerJ. MahajanS.D. SchwartzS.A. BruggemannL. AalinkeelR. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment.Microorganisms2023116161410.3390/microorganisms11061614 37375116
    [Google Scholar]
  28. ItoA. TaniuchiA. MayT. KawataK. OkabeS. Increased antibiotic resistance of Escherichia coli in mature biofilms.Appl. Environ. Microbiol.200975124093410010.1128/AEM.02949‑08 19376922
    [Google Scholar]
  29. AlhedeM. KraghK.N. QvortrupK. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.PLoS One2011611e2794310.1371/journal.pone.0027943 22132176
    [Google Scholar]
  30. BowlerL.L. ZhanelG.G. BallT.B. SawardL.L. Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime.Antimicrob. Agents Chemother.20125694976497910.1128/AAC.00650‑12 22777043
    [Google Scholar]
  31. HaaberJ. CohnM.T. FreesD. AndersenT.J. IngmerH. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics.PLoS One201277e4107510.1371/journal.pone.0041075 22815921
    [Google Scholar]
  32. StewartP.S. Mechanisms of antibiotic resistance in bacterial biofilms.Int. J. Med. Microbiol.2002292210711310.1078/1438‑4221‑00196 12195733
    [Google Scholar]
  33. AppelbaumP.C. 2012 and beyond: Potential for the start of a second pre-antibiotic era?J. Antimicrob. Chemother.20126792062206810.1093/jac/dks213 22687888
    [Google Scholar]
  34. HarbarthS. BalkhyH.H. GoossensH. World healthcare-associated infections resistance forum participants.Antimicrobial resistance: One world, one fight! Antimicrob Resist Infect Cont201544910.1186/s13756‑015‑0091‑2
    [Google Scholar]
  35. RomuloA. ZuhudE.A.M. RondevaldovaJ. KokoskaL. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine.Pharm. Biol.201856128729310.1080/13880209.2018.1462834 29656672
    [Google Scholar]
  36. OgboleO.O. SegunP.A. FasinuP.S. Antimicrobial and antiprotozoal activities of twenty-four Nigerian medicinal plant extracts.S. Afr. J. Bot.201811724024610.1016/j.sajb.2018.05.028
    [Google Scholar]
  37. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta, Gen. Subj.201318303670369510.1016/j.bbagen.2013.02.008
    [Google Scholar]
  38. CushnieT.P.T. TaylorP.W. NagaokaY. UesatoS. HaraY. LambA.J. Investigation of the antibacterial activity of 3- O -octanoyl-(-)-epicatechin.J. Appl. Microbiol.200810551461146910.1111/j.1365‑2672.2008.03881.x 18795977
    [Google Scholar]
  39. BarbieriR. CoppoE. MarcheseA. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  40. JarriyawattanachaikulW. ChaveerachP. ChokesajjawateeN. Antimicrobial activity of thai-herbal plants against food-borne pathogens E. coli, S. aureus and C. jejuni.Agric. Agric. Sci. Procedia201611202410.1016/j.aaspro.2016.12.004
    [Google Scholar]
  41. SiriwatanametanonN. DodgsonW. DodgsonJ. Investigation of antimicrobial activity of 13 Thai medicinal plants against bacteria and fungi.J. Pure Appl. Microbiol.20171131351135610.22207/JPAM.11.3.15
    [Google Scholar]
  42. PhalanisongP. VichitphanK. HanJ. VichitphanS. High antioxidant and phenolic contents related to antibacterial activity against gastrointestinal pathogenic bacteria of some Thai medicinal plants.Pharmacogn. J.201810234134810.5530/pj.2018.2.58
    [Google Scholar]
  43. GibotS. Fighting the enemy properly?Crit. Care Med.20043251223122410.1097/01.CCM.0000125515.37781.9D 15190976
    [Google Scholar]
  44. LeeJ.H. KimY.G. ChoH.S. RyuS.Y. ChoM.H. LeeJ. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7.Phytomedicine2014218-91037104210.1016/j.phymed.2014.04.008 24837471
    [Google Scholar]
  45. AlmeidaF.A. VargasE.L.G. CarneiroD.G. PintoU.M. VanettiM.C.D. Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella.Microb. Pathog.201812136938810.1016/j.micpath.2018.05.014 29763730
    [Google Scholar]
  46. BouyahyaA. DakkaN. Et-TouysA. AbriniJ. BakriY. Medicinal plant products targeting quorum sensing for combating bacterial infections.Asian Pac. J. Trop. Med.201710872974310.1016/j.apjtm.2017.07.021 28942821
    [Google Scholar]
  47. BodedeO. ShaikS. CheniaH. SinghP. MoodleyR. Quorum sensing inhibitory potential and in silico molecular docking of flavonoids and novel terpenoids from Senegalia nigrescens.J. Ethnopharmacol.201821613414610.1016/j.jep.2018.01.031 29408657
    [Google Scholar]
  48. FratianniF. NazzaroF. MarandinoA. Biochemical composition, antimicrobial activities,and anti-quorum-sensing activities of ethanol and ethyl acetate extracts from Hypericum connatum Lam. (Guttiferae).J. Med. Food201316545445910.1089/jmf.2012.0197 23631492
    [Google Scholar]
  49. TeanpaisanR. KawsudP. PahumuntoN. PuripattanavongJ. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms.J. Tradit. Complement. Med.20177217217710.1016/j.jtcme.2016.06.007 28417087
    [Google Scholar]
  50. VattemD.A. MihalikK. CrixellS.H. McLeanR.J.C. Dietary phytochemicals as quorum sensing inhibitors.Fitoterapia200778430231010.1016/j.fitote.2007.03.009 17499938
    [Google Scholar]
  51. OmwengaE.O. HenselA. PereiraS. ShitandiA.A. GoycooleaF.M. Antiquorum sensing, antibiofilm formation and cytotoxicity activity of commonly used medicinal plants by inhabitants of Borabu sub-county, Nyamira County, Kenya.PLoS One20171211e018572210.1371/journal.pone.0185722 29091715
    [Google Scholar]
  52. UzorP.F. Alkaloids from plants with antimalarial activity: A review of recent studies.Evid. Based Complement. Alternat. Med.20202020874908310.1155/2020/8749083
    [Google Scholar]
  53. MishraR. PandaA.K. De MandalS. ShakeelM. BishtS.S. KhanJ. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens.Front. Microbiol.20201156632510.3389/fmicb.2020.566325 33193155
    [Google Scholar]
  54. RutherfordS.T. BasslerB.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control.Cold Spring Harb. Perspect. Med.2012211a01242710.1101/cshperspect.a012427 23125205
    [Google Scholar]
  55. ChadhaJ. HarjaiK. ChhibberS. Repurposing phytochemicals as anti‐virulent agents to attenuate quorum sensing‐regulated virulence factors and biofilm formation in Pseudomonas aeruginosa.Microb. Biotechnol.20221561695171810.1111/1751‑7915.13981 34843159
    [Google Scholar]
  56. LuoJ. DongB. WangK. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.PLoS One2017124e017688310.1371/journal.pone.0176883 28453568
    [Google Scholar]
  57. KumarL. PatelS.K.S. KhargaK. Molecular mechanisms and applications of N-Acyl homoserine lactone-mediated quorum sensing in bacteria.Molecules20222721758410.3390/molecules27217584 36364411
    [Google Scholar]
  58. LuL. WangJ. QinT. ChenK. XieJ. XiB. Carvacrol inhibits quorum sensing in opportunistic bacterium Aeromonas hydrophila.Microorganisms2023118202710.3390/microorganisms11082027 37630587
    [Google Scholar]
  59. RoyR. TiwariM. DonelliG. TiwariV. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action.Virulence20189152255410.1080/21505594.2017.1313372 28362216
    [Google Scholar]
  60. BhatwalkarS.B. MondalR. KrishnaS.B.N. AdamJ.K. GovenderP. AnupamR. Antibacterial properties of organosulfur compounds of Garlic (Allium sativum).Front. Microbiol.20211261307710.3389/fmicb.2021.613077 34394014
    [Google Scholar]
  61. AdnanM. PatelM. DeshpandeS. Effect of Adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: An in vitro-in silico approach.Front. Microbiol.20201182310.3389/fmicb.2020.00823 32477292
    [Google Scholar]
  62. LimoliDH JonesCJ WozniakDJ Bacterial extracellular polysaccharides in biofilm formation and function.Microbiol Spectr20153310.112810.1128/9781555817466.ch11
    [Google Scholar]
  63. BreslawecA.P. WangS. MonahanK.N. BarryL.L. PoulinM.B. The endoglycosidase activity of Dispersin B is mediated through electrostatic interactions with cationic poly‐β‐(1→6)‐ N ‐acetylglucosamine.FEBS J.202329041049105910.1111/febs.16624 36083143
    [Google Scholar]
  64. N., Wang P.Q., Wang P.Y., Ma C.Y., Kang W.Y. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn).Lam. BMC Complement. Altern. Med.201818261
    [Google Scholar]
  65. RahimkhaniM. MordadiA. KazemianK. KhaliliH. Comparison of Helicobacter pylori detection methods: It’s association with leukocytosis and monocytosis.Infect. Disord. Drug Targets202120692092410.2174/1871526520666200707113955 32634084
    [Google Scholar]
  66. RayV.A. HillP.J. StoverC.K. Anti-Psl targeting of Pseudomonas aeruginosa biofilms for neutrophil-mediated disruption.Sci. Rep.2017711606510.1038/s41598‑017‑16215‑6 29167572
    [Google Scholar]
  67. RaoraneC.J. LeeJ.H. KimY.G. RajasekharanS.K. García-ContrerasR. LeeJ. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii.Front. Microbiol.20191099010.3389/fmicb.2019.00990 31134028
    [Google Scholar]
  68. AlMatarM. VarI. KayarB. Evaluation of polyphenolic profile and antibacterial activity of pomegranate juice in combination with Rifampin (R) against MDR-TB clinical isolates.Curr. Pharm. Biotechnol.201920431732610.2174/1389201020666190308130343 30854955
    [Google Scholar]
  69. AlMatarM. MakkyE.A. MahmoodM.H. WenK.X. QiT.B.G. In vitro antioxidant and antimicrobial studies of ethanolic plant extracts of P. granatum, O. stamineus, A. bilimbi, M. nigra, and E. longifolia.Curr. Pharm. Biotechnol.202223101284131210.2174/1389201022666210615113854 34132178
    [Google Scholar]
  70. SongX. XiaY.X. HeZ.D. ZhangH.J. A review of natural products with anti-biofilm activity.Curr. Org. Chem.201822878981710.2174/1385272821666170620110041
    [Google Scholar]
  71. MengF.C. WuZ.F. YinZ.Q. LinL.G. WangR. ZhangQ.W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity.Chin. Med.20181311310.1186/s13020‑018‑0171‑3 29541156
    [Google Scholar]
  72. ThawabtehA. JumaS. BaderM. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens.Toxins2019111165610.3390/toxins11110656 31717922
    [Google Scholar]
  73. KuangZ.Q. ZhangX.H. MaJ.J. LiJ.L. ZhouL.J. Effects of Coptis chinensis Franch alkaloids on plants and microorganisms: A Review.Allelopathy J.201843213915710.26651/allelo.j./2018‑43‑2‑1137
    [Google Scholar]
  74. LiuY. CuiY. LuL. GongY. HanW. PiaoG. Natural indole‐containing alkaloids and their antibacterial activities.Arch. Pharm. (Weinheim)202035310200012010.1002/ardp.202000120 32557757
    [Google Scholar]
  75. XieQ. JohnsonB.R. WenckusC.S. FayadM.I. WuC.D. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model.J. Endod.20123881114111710.1016/j.joen.2012.04.023 22794217
    [Google Scholar]
  76. ZhaoL.X. LiD.D. HuD.D. Effect of tetrandrine against Candida albicans biofilms.PLoS One2013811e7967110.1371/journal.pone.0079671 24260276
    [Google Scholar]
  77. DwivediD. SinghV. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans.J. Tradit. Complement. Med.201661576110.1016/j.jtcme.2014.11.025 26870681
    [Google Scholar]
  78. OthmanL. SleimanA. Abdel-MassihR.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants.Front. Microbiol.20191091110.3389/fmicb.2019.00911 31156565
    [Google Scholar]
  79. RahimkhaniM. MordadiA.R. Survey of the lethal effect of ciprofloxacin and supernatant isolated from Staphylococcus aureus under the stress of ciprofloxacin on methicillin-resistant Staphylococcus aureus strains isolated from clinical specimens.Journal of Payavard Salamat2022156578584
    [Google Scholar]
  80. RahimkhaniM. RajabiZ. MRSA and VRSA isolated from patients hospitalized in the ICU, NICU and surgical departments of hospitals.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202494365365710.1007/s40011‑024‑01558‑8
    [Google Scholar]
  81. KumarL. ChhibberS. HarjaiK. Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1.Fitoterapia201390737810.1016/j.fitote.2013.06.017 23831483
    [Google Scholar]
  82. SlobodníkováL. FialováS. RendekováK. KováčJ. MučajiP. Antibiofilm activity of plant polyphenols.Molecules20162112171710.3390/molecules21121717 27983597
    [Google Scholar]
  83. BolatE. SarıtaşS. DumanH. Polyphenols: Secondary metabolites with a biological impression.Nutrients20241615255010.3390/nu16152550 39125431
    [Google Scholar]
  84. Antimicrobial activity of artocarpesin from Artocarpus heterophyllus Lam. against methicillin-resistant Staphylococcus aureus (MRSA).J. Med. Plants Res.201264879488210.5897/JMPR12.699
    [Google Scholar]
  85. EveA. AlieroA.A. NalubiriD. In vitro antibacterial activity of crude extracts of Artocarpus heterophyllus seeds against selected diarrhoea-causing superbug bacteria.J Sci World20202020981397010.1155/2020/9813970
    [Google Scholar]
  86. Al-DhabiN.A. BalachandranC. RajM.K. Antimicrobial, antimycobacterial and antibiofilm properties of Couroupita guianensis Aubl. fruit extract.BMC Complement. Altern. Med.201212124210.1186/1472‑6882‑12‑242 23206492
    [Google Scholar]
  87. PrabuG.R. GnanamaniA. SadullaS. Guaijaverin a plant flavonoid as potential antiplaque agent against Streptococcus mutans.J. Appl. Microbiol.2006101248749510.1111/j.1365‑2672.2006.02912.x 16882158
    [Google Scholar]
  88. ChoiM.A. KimS.H. ChungW.Y. HwangJ.K. ParkK.K. Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza, has an anti-metastatic potential in experimental mouse lung metastasis model.Biochem. Biophys. Res. Commun.2004326121021710.1016/j.bbrc.2004.11.020 15567173
    [Google Scholar]
  89. RukayadiY. HwangJ.K. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms.Lett. Appl. Microbiol.200642440040410.1111/j.1472‑765X.2006.01876.x 16599995
    [Google Scholar]
  90. Cox-GeorgianD. RamadossN. DonaC. BasuC. Therapeutic and medicinal uses of terpenes.Medicinal Plants.Springer201933335910.1007/978‑3‑030‑31269‑5_15
    [Google Scholar]
  91. MahizanN.A. YangS.K. MooC.L. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens.Molecules20192414263110.3390/molecules24142631 31330955
    [Google Scholar]
  92. LiuX.T. PanQ. ShiY. ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens.J. Nat. Prod.200669225526010.1021/np050479e 16499326
    [Google Scholar]
  93. KatsuraH. TsukiyamaR.I. SuzukiA. KobayashiM. In vitro antimicrobial activities of bakuchiol against oral microorganisms.Antimicrob. Agents Chemother.200145113009301310.1128/AAC.45.11.3009‑3013.2001 11600349
    [Google Scholar]
  94. KuboM. DohiT. OdaniT. TanakaH. IwamuraJ. Cytotoxicity of Corylifoliae fructus. I. Isolation of the effective compound and the cytotoxicity.Yakugaku Zasshi19891091292693110.1248/yakushi1947.109.12_926 2630635
    [Google Scholar]
  95. Favre-GodalQ. QueirozE.F. DorsazS. EbrahimS.N. MarcourtL. GindroK. HPLC antifungal activity-based profiling of Swartzia simplex and targeted MPLC isolation of its antifungal diterpenes.Planta Med.20148016761010.1055/s‑0034‑1394733
    [Google Scholar]
  96. JeonJ.G. PanditS. XiaoJ. Influences of trans‐trans farnesol, a membrane‐targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed‐species oral biofilms.Int. J. Oral Sci.2011329810610.4248/IJOS11038 21485314
    [Google Scholar]
  97. ClaffeyN. Essential oil mouthwashes: A key component in oral health management.J. Clin. Periodontol.200330s5Suppl. 5222410.1034/j.1600‑051X.30.s5.8.x 12787200
    [Google Scholar]
  98. TakaradaK. KimizukaR. TakahashiN. HonmaK. OkudaK. KatoT. A comparison of the antibacterial efficacies of essential oils against oral pathogens.Oral Microbiol. Immunol.2004191616410.1046/j.0902‑0055.2003.00111.x 14678476
    [Google Scholar]
  99. ChaJ.D. JeongM.R. ChoiH.J. Chemical composition and antimicrobial activity of the essential oil of Artemisia lavandulaefolia.Planta Med.200571657557710.1055/s‑2005‑864164 15971134
    [Google Scholar]
  100. ChaJ.D. JeongM.R. JeongS.I. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica.Phytother. Res.200721329529910.1002/ptr.1864 17236183
    [Google Scholar]
  101. ChemsaA.E. ErolE. ÖztürkM. Chemical constituents of essential oil of endemic Rhanterium suaveolens Desf. growing in Algerian Sahara with antibiofilm, antioxidant and anticholinesterase activities.Nat. Prod. Res.201630182120212410.1080/14786419.2015.1110705 26564377
    [Google Scholar]
  102. SilvaR.C. CostaJ.S. FigueiredoR.O. Monoterpenes and sesquiterpenes of essential oils from Psidium species and their biological properties.Molecules202126496510.3390/molecules26040965 33673039
    [Google Scholar]
  103. SwolanaD. KępaM. Kabała-DzikA. DzikR. WojtyczkaR.D. Sensitivity of Staphylococcal biofilm to selected compounds of plant origin.Antibiotics202110560710.3390/antibiotics10050607 34065384
    [Google Scholar]
  104. Sankar GaneshP. Rai VittalR. In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO 2 method against Pseudomonas aeruginosa PAO1.Nat. Prod. Res.201529242295229810.1080/14786419.2015.1004673 25635569
    [Google Scholar]
  105. ShamimA. AliA. IqbalZ. Natural medicine a promising candidate in combating microbial biofilm.Antibiotics202312229910.3390/antibiotics12020299 36830210
    [Google Scholar]
  106. KooH. Nino de GuzmanP. SchobelB.D. Vacca SmithA.V. BowenW.H. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development.Caries Res.2006401202710.1159/000088901 16352876
    [Google Scholar]
  107. RahimZ.H.A. KhanH.B.S.G. Comparative studies on the effect of crude aqueous (CA) and solvent (CM) extracts of clove on the cariogenic properties of Streptococcus mutans.J. Oral Sci.200648311712310.2334/josnusd.48.117 17023743
    [Google Scholar]
  108. SteinbergD. FeldmanM. OfekI. WeissE.I. Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm.Int. J. Antimicrob. Agents200525324725110.1016/j.ijantimicag.2004.10.014 15737520
    [Google Scholar]
  109. MakarewiczM. DrożdżI. TarkoT. Duda-ChodakA. The interactions between polyphenols and microorganisms, especially gut microbiota.Antioxidants202110218810.3390/antiox10020188
    [Google Scholar]
  110. VelozJ.J. SaavedraN. LilloA. AlvearM. BarrientosL. SalazarL.A. Antibiofilm activity of Chilean propolis on Streptococcus mutans is influenced by the year of collection.BioMed Res. Int.201520151610.1155/2015/291351 26247015
    [Google Scholar]
  111. BrambillaL.Z.S. EndoE.H. CortezD.A.G. Dias FilhoB.P. Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of Piper regnellii.Rev. Bras. Farmacogn.201727111211710.1016/j.bjp.2016.08.008
    [Google Scholar]
  112. SubramaniamG. KhanG.Z. SivasamughamL.A. WongL.S. KiddS. YapC.K. Antimicrobial and anti-biofilm activities of plant extracts against Pseudomonas aeruginosa: A review.J Exp Biol Agric202311578079010.18006/2023.11(5).780.790
    [Google Scholar]
  113. UlreyR.K. BarksdaleS.M. ZhouW. van HoekM.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa.BMC Complement. Altern. Med.201414149910.1186/1472‑6882‑14‑499 25511463
    [Google Scholar]
  114. GuoY. LiZ. ChenF. ChaiY. Polyphenols in oral health: Homeostasis maintenance, disease prevention, and therapeutic applications.Nutrients20231520438410.3390/nu15204384 37892459
    [Google Scholar]
  115. Ortega-RamirezL.A. Gutiérrez-PachecoM.M. Vargas-ArispuroI. González-AguilarG.A. Martínez-TéllezM.A. Ayala-ZavalaJ.F. Inhibition of glucosyltransferase activity and glucan production as an antibiofilm mechanism of lemongrass essential oil against Escherichia coli O157:H7.Antibiotics20209310210.3390/antibiotics9030102 32121319
    [Google Scholar]
  116. PalomboE.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases.Evid. Based Complement. Alternat. Med.20112011168035410.1093/ecam/nep067 19596745
    [Google Scholar]
  117. VelozJ.J. SaavedraN. AlvearM. ZambranoT. BarrientosL. SalazarL.A. Polyphenol-Rich extract from propolis reduces the expression and activity of Streptococcus mutans Glucosyltransferases at subinhibitory concentrations.BioMed Res. Int.201620161710.1155/2016/4302706 27110563
    [Google Scholar]
  118. MombeshoraM. MukanganyamaS. Antibacterial activities, proposed mode of action and cytotoxicity of leaf extracts from Triumfetta welwitschii against Pseudomonas aeruginosa.BMC Complement. Altern. Med.201919131510.1186/s12906‑019‑2713‑3 31744500
    [Google Scholar]
  119. MombeshoraM. ChiG.F. MukanganyamaS. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa.Biochem. Res. Int.2021202111310.1155/2021/9946183 34221506
    [Google Scholar]
  120. StefanovićO.D. TešićJ.D. ČomićL.R. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials.J Food Drug Anal201523341742410.1016/j.jfda.2015.01.003
    [Google Scholar]
  121. MrózM. KusznierewiczB. Phytochemical screening and biological evaluation of Greek sage (Salvia fruticosa Mill.) extracts.Sci. Rep.20231312230910.1038/s41598‑023‑49695‑w 38102229
    [Google Scholar]
  122. de AraujoA.R. QuelemesP.V. PerfeitoM.L.G. Antibacterial, antibiofilm and cytotoxic activities of Terminalia fagifolia Mart. extract and fractions.Ann. Clin. Microbiol. Antimicrob.20151412510.1186/s12941‑015‑0084‑2 25902872
    [Google Scholar]
  123. Medeiros MazzoranaD. NicolauV. MoreiraJ. de Aguiar AmaralP. de AndradeV.M. Influence of Mikania laevigata extract over the genotoxicity induced by alkylating agents.ISRN Toxicol.201320131710.1155/2013/521432 23724299
    [Google Scholar]
  124. Frassinetti Stefania, Gabriele Morena, Moccia Eleonora, Longo Vincenzo, Di Gioia Diana. Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.Lebensm. Wiss. Technol.202010914910914910.1016/j.lwt.2020.109149
    [Google Scholar]
  125. ValverdeM.E. Hernández-PérezT. Paredes-LópezO. Edible mushrooms: Improving human health and promoting quality life.Int. J. Microbiol.2015201511410.1155/2015/376387 25685150
    [Google Scholar]
  126. FernandesÂ. PetrovićJ. StojkovićD. Polyporus squamosus (Huds.) Fr from different origins: Chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa.Lebensm. Wiss. Technol.201669919710.1016/j.lwt.2016.01.037
    [Google Scholar]
  127. ElekhnawyE. NegmW.A. El-AasrM. Histological assessment, anti-quorum sensing, and anti-biofilm activities of Dioon spinulosum extract: In vitro and in vivo approach.Sci. Rep.202212118010.1038/s41598‑021‑03953‑x 34996996
    [Google Scholar]
  128. CuiH. ZhaoC. LinL. Antibacterial activity of H elichrysum italicum oil on vegetables and its mechanism of action.J. Food Process. Preserv.20153962663267210.1111/jfpp.12516
    [Google Scholar]
  129. SinghM. PandeyN. AgnihotriV. SinghK.K. PandeyA. Antioxidant, antimicrobial activity and bioactive compounds of Bergenia ciliata Sternb.: A valuable medicinal herb of Sikkim Himalaya.J. Tradit. Complement. Med.20177215215710.1016/j.jtcme.2016.04.002 28417084
    [Google Scholar]
  130. AlamK. FarrajD.A.A. Mah-e-FatimaS. Anti-biofilm activity of plant derived extracts against infectious pathogen Pseudomonas aeruginosa PAO1.J. Infect. Public Health202013111734174110.1016/j.jiph.2020.07.007 32753311
    [Google Scholar]
  131. ErtürkÖ. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants.Biologia (Bratisl.)200661327527810.2478/s11756‑006‑0050‑8
    [Google Scholar]
  132. KchaouW. AbbèsF. BleckerC. AttiaH. BesbesS. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.).Ind. Crops Prod.20134526226910.1016/j.indcrop.2012.12.028
    [Google Scholar]
  133. SaelohD. VisutthiM. Efficacy of thai plant extracts for antibacterial and anti-biofilm activities against pathogenic bacteria.Antibiotics20211012147010.3390/antibiotics10121470 34943682
    [Google Scholar]
  134. BlandoF. RussoR. NegroC. De BellisL. FrassinettiS. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode polyphenolic extracts.Antioxidants20198511710.3390/antiox8050117 31052535
    [Google Scholar]
  135. MohantaY.K. BiswasK. JenaS.K. HashemA. Abd AllahE.F. MohantaT.K. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the indian medicinal plants.Front. Microbiol.202011114310.3389/fmicb.2020.01143 32655511
    [Google Scholar]
  136. AliM.S. AminM.R. KamalC.M.I. HossainM.A. In vitro antioxidant, cytotoxic, thrombolytic activities and phytochemical evaluation of methanol extract of the A. philippense L. leaves.Asian Pac. J. Trop. Biomed.20133646446910.1016/S2221‑1691(13)60097‑0 23730559
    [Google Scholar]
  137. NaghmouchiK. BelguesmiaY. BaahJ. TeatherR. DriderD. Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli.Res. Microbiol.201116229910710.1016/j.resmic.2010.09.014 20868743
    [Google Scholar]
  138. GuimarãesR. MilhoC. LiberalÂ. Antibiofilm potential of medicinal plants against Candida spp. oral biofilms: A review.Antibiotics2021109114210.3390/antibiotics10091142 34572724
    [Google Scholar]
  139. MahloS.M. ChaukeH.R. McGawL. EloffJ. Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi.Afr. J. Tradit. Complement. Altern. Med.201613421622210.21010/ajtcam.v13i4.28 28852739
    [Google Scholar]
  140. KavanaughN.L. RibbeckK. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms.Appl. Environ. Microbiol.201278114057406110.1128/AEM.07499‑11 22467497
    [Google Scholar]
  141. MirghaniR. SabaT. KhaliqH. Biofilms: Formation, drug resistance and alternatives to conventional approaches.AIMS Microbiol.20228323927710.3934/microbiol.2022019 36317001
    [Google Scholar]
  142. AlSheikhH.M.A. SultanI. KumarV. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance.Antibiotics20209848010.3390/antibiotics9080480 32759771
    [Google Scholar]
  143. ChenC. YuZ. LiY. FichnaJ. StorrM. Effects of berberine in the gastrointestinal tract: A review of actions and therapeutic implications.Am. J. Chin. Med.20144251053107010.1142/S0192415X14500669 25183302
    [Google Scholar]
  144. WangC. ChengY. ZhangY. Berberine and its main metabolite berberrubine inhibit platelet activation through suppressing the class I PI3Kβ/Rasa3/Rap1 pathway.Front. Pharmacol.20211273460310.3389/fphar.2021.734603 34690771
    [Google Scholar]
  145. LanJ. ZhaoY. DongF. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension.J. Ethnopharmacol.2015161698110.1016/j.jep.2014.09.049 25498346
    [Google Scholar]
  146. MujtabaM.A. AkhterM.H. AlamM.S. AliM.D. HussainA. An updated review on therapeutic potential and recent advances in drug delivery of Berberine: Current status and future prospect.Curr. Pharm. Biotechnol.2022231607110.2174/1389201022666210208152113 33557735
    [Google Scholar]
  147. ZolotarevaD. ZazybinA. DauletbakovA. Morpholine, piperazine, and piperidine derivatives as antidiabetic agents.Molecules20242913304310.3390/molecules29133043 38998996
    [Google Scholar]
  148. ChopraB. DhingraA.K. KapoorR.P. PrasadD.N. Piperine and its various physicochemical and biological aspects: A review.Open Chem. J.201631759610.2174/1874842201603010075
    [Google Scholar]
  149. FrymoyerA. ShugartsS. BrowneM. WuA.H.B. FrassettoL. BenetL.Z. Effect of single-dose rifampin on the pharmacokinetics of warfarin in healthy volunteers.Clin. Pharmacol. Ther.201088454054710.1038/clpt.2010.142 20703222
    [Google Scholar]
  150. BedadaS.K. BogaP.K. The influence of piperine on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers.Eur. J. Clin. Pharmacol.201773334334910.1007/s00228‑016‑2173‑3 27981349
    [Google Scholar]
  151. DubeyR.K. LeenersB. ImthurnB. Merki-FeldG.S. RosselliM. Piperine decreases binding of drugs to human plasma and increases uptake by brain microvascular endothelial cells.Phytother. Res.201731121868187410.1002/ptr.5929 28948673
    [Google Scholar]
  152. SeptamaA.W. PanichayupakaranantP. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.Pharm. Biol.201654468669110.3109/13880209.2015.1072566 26427318
    [Google Scholar]
  153. OonS.F. NallappanM. TeeT.T. Xanthorrhizol: A review of its pharmacological activities and anticancer properties.Cancer Cell Int.201515110010.1186/s12935‑015‑0255‑4 26500452
    [Google Scholar]
  154. NizamN.N. MahmudS. ArkS.M.A. KamruzzamanM. HasanM.K. Bakuchiol, a natural constituent and its pharmacological benefits.F1000 Res.2023122910.12688/f1000research.129072.2 38021404
    [Google Scholar]
  155. PatraS. BiswasP. KarmakarS. BiswasK. Repression of resistance mechanisms of Pseudomonas aeruginosa: Implications of the combination of antibiotics and phytoconstituents.Arch. Microbiol.2024206729410.1007/s00203‑024‑04012‑5 38850339
    [Google Scholar]
  156. RatherM.A. GuptaK. MandalM. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies.Braz. J. Microbiol.20215241701171810.1007/s42770‑021‑00624‑x 34558029
    [Google Scholar]
  157. Álvarez-MartínezF.J. Barrajón-CatalánE. Herranz-LópezM. MicolV. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action.Phytomedicine20219015362610.1016/j.phymed.2021.153626 34301463
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265324950241204182204
Loading
/content/journals/iddt/10.2174/0118715265324950241204182204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test