Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

The COVID-19 epidemic in recent years has been produced by various coronavirus strains that nearly destroyed world health policies and economics. Emerging viral strains exacerbated the pandemic. Huge investments have been made in preventative vaccines to combat the disease, but the genetic instability of these viruses has hampered their usefulness. However, in addition to traditional therapeutic approaches, nutraceuticals have been considered efficacious in preventing and or treating COVID-19 and post-COVID syndrome. In this context, nutraceuticals such as vitamins or dietary supplements including multiple vitamins and minerals and propolis have been widely studied for their significant impact on viral respiratory diseases like SARS-CoV-2 and COVID-19. Some of these nutraceuticals having antioxidant, anti-inflammatory, and immune-modulatory properties have been highly recommended for use as an adjunct option to moderate the adverse effects associated with the COVID-19 pandemic. In this review, we intend to present the recent understanding and converse scientific implications for the use of nutraceutical antioxidants such as vitamins, minerals, probiotics, and polyphenols like bee propolis, in the management of viral respiratory diseases and post-COVID-19 syndrome. Future challenges and limitations regarding the use and bioavailability of these ingredients, and dose-response studies are further emphasized.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265320091241017161919
2024-12-30
2025-12-04
Loading full text...

Full text loading...

References

  1. AshiqueS. SandhuN.K. “Ayurvedic System”: A new possible safe and effective way to get rid of this critical COVID-19 pandemic situation- A Review.Curr. Tradit. Med.202281e13042119281810.2174/2215083807666210413113113
    [Google Scholar]
  2. ács NÁ, Bánhidy F, Puhó E, Czeizel AE. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring.Birth Defects Res. A Clin. Mol. Teratol.2005731298999610.1002/bdra.20195 16323157
    [Google Scholar]
  3. Al-HaririM. Immune’s-boosting agent: Immunomodulation potentials of propolis.J. Family Community Med.2019261576010.4103/jfcm.JFCM_46_18 30697106
    [Google Scholar]
  4. AliA.M. KunugiH. Propolis, bee honey, and their components protect against coronavirus disease 2019 (COVID-19): A review of in silico, in vitro, and clinical studies.Molecules2021265123210.3390/molecules26051232 33669054
    [Google Scholar]
  5. TeshomeA. AdaneA. GirmaB. MekonnenZ.A. The impact of vitamin D level on COVID-19 infection: systematic review and meta-analysis.Front. Public Health2021962455910.3389/fpubh.2021.624559 33748066
    [Google Scholar]
  6. DilokthornsakulW. KosiyapornR. WuttipongwaragonR. DilokthornsakulP. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies.J. Integr. Med.202220211412510.1016/j.joim.2022.01.008 35144898
    [Google Scholar]
  7. AndreyevA.Y. KushnarevaY.E. StarkovA.A. Mitochondrial metabolism of reactive oxygen species.Biochemistry (Mosc.)200570220021410.1007/s10541‑005‑0102‑7 15807660
    [Google Scholar]
  8. AnsarM. IvanciucT. GarofaloR.P. CasolaA. Increased lung catalase activity confers protection against experimental RSV infection.Sci. Rep.2020101365310.1038/s41598‑020‑60443‑2 32107411
    [Google Scholar]
  9. AshiqueS. GuptaK. GuptaG. Vitamin D—A prominent immunomodulator to prevent COVID ‐19 infection.Int. J. Rheum. Dis.2023261133010.1111/1756‑185X.14477 36308699
    [Google Scholar]
  10. GreerR.M. McErleanP. ArdenK.E. Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections?J. Clin. Virol.2009451101510.1016/j.jcv.2009.03.008 19376742
    [Google Scholar]
  11. ArihiroS. NakashimaA. MatsuokaM. Randomized trial of vitamin D supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease.Inflamm. Bowel Dis.20192561088109510.1093/ibd/izy346 30601999
    [Google Scholar]
  12. ArreolaR. Quintero-FabiánS. López-RoaR.I. Immunomodulation and anti-inflammatory effects of garlic compounds.J. Immunol. Res.2015201511310.1155/2015/401630 25961060
    [Google Scholar]
  13. WangM.Y. ZhaoR. GaoL.J. GaoX.F. WangD.P. CaoJ.M. SARS-CoV-2: structure, biology, and structure-based therapeutics development.Front. Cell. Infect. Microbiol.20201058726910.3389/fcimb.2020.587269 33324574
    [Google Scholar]
  14. Al-AyedM.S. AsaadA.M. QureshiM.A. AmeenM.S. Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction.Saudi Med. J.2014351113481353 25399211
    [Google Scholar]
  15. LauS. YipC. WooP. YuenK.Y. Human rhinovirus C: A newly discovered human rhinovirus species.Emerg. Health Threats J.201031710610.3402/ehtj.v3i0.7106 22460392
    [Google Scholar]
  16. BayanL. KoulivandP.H. GorjiA. Garlic: a review of potential therapeutic effects.Avicenna J. Phytomed.201441114 25050296
    [Google Scholar]
  17. MorgulchikN. AthanasopoulouF. ChuE. LamY. KamalyN. Potential therapeutic approaches for targeted inhibition of inflammatory cytokines following COVID-19 infection-induced cytokine storm.Interface Focus20221212021000610.1098/rsfs.2021.0006 34956607
    [Google Scholar]
  18. BehbahaniM. Anti-viral activity of the methanolic leaf extract of an Iranian medicinal plant “Hyssopus officinalis” against herpes simplex virus.JMPR2009311181125
    [Google Scholar]
  19. BusaniS. TosiM. MighaliP. Multi-centre, three arm, randomized controlled trial on the use of methylprednisolone and unfractionated heparin in critically ill ventilated patients with pneumonia from SARS-CoV-2 infection: A structured summary of a study protocol for a randomised controlled trial.Trials202021172410.1186/s13063‑020‑04645‑z 32807241
    [Google Scholar]
  20. BerrettaA.A. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19.Biomed. Pharmacother.2020131110622
    [Google Scholar]
  21. AbubakarM.B. UsmanD. El-Saber BatihaG. Natural products modulating angiotensin converting enzyme 2 (ACE2) as potential COVID-19 therapies.Front. Pharmacol.20211262993510.3389/fphar.2021.629935 34012391
    [Google Scholar]
  22. CaiY. LiY.F. TangL.P. A new mechanism of vitamin C effects on A/FM/1/47(H1N1) virus-induced pneumonia in restraint-stressed mice.BioMed Res. Int.2015201511210.1155/2015/675149 25710018
    [Google Scholar]
  23. JefferyL.E. BurkeF. MuraM. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3.J. Immunol.200918395458546710.4049/jimmunol.0803217 19843932
    [Google Scholar]
  24. AshiqueS KumarS KumarH RoyJ PalS PalS. A brief overview of various vaccines against nCOVID19, including safety, efficacy, reported cases, clinical trials, and progress. Indian J Heal Sci Biomed Res kleu2023161132910.4103/kleuhsj.kleuhsj_505_22
    [Google Scholar]
  25. CaoH. AndersonR.A. Cinnamon polyphenol extract regulates tristetraprolin and related gene expression in mouse adipocytes.J. Agric. Food Chem.20115962739274410.1021/jf103527x 21329350
    [Google Scholar]
  26. CardwellG. BornmanJ.F. JamesA.P. BlackL.J. A review of mushrooms as a potential source of dietary vitamin D.Nutrients20181010149810.3390/nu10101498 30322118
    [Google Scholar]
  27. CarrA.C. RoweS. The emerging role of vitamin C in the prevention and treatment of COVID-19.Nutrients20201211328610.3390/nu12113286 33121019
    [Google Scholar]
  28. JungH.Y. YooD.Y. NamS.M. Valerenicacidprotectsagainstphysical and psychological stress by reducing the turnover of serotonin and norepinephrine in mouse hippocampus-amygdalaregion.J. Med. Food201518121333133910.1089/jmf.2014.3412 26177123
    [Google Scholar]
  29. CatanzaroM. CorsiniE. RosiniM. RacchiM. LanniC. Immunomodulators inspired by nature: areview on curcumin and echinacea.Molecules20182311277810.3390/molecules23112778 30373170
    [Google Scholar]
  30. Jimeno-AlmazánA. PallarésJ.G. Buendía-RomeroÁ. Post-COVID-19 syndrome and the potential benefits of exercise.Int. J. Environ. Res. Public Health20211810532910.3390/ijerph18105329 34067776
    [Google Scholar]
  31. ChakrabortyS. BalanM. FlynnE. ZurakowskiD. ChoueiriT.K. PalS. Activation of c-Met in cancer cells mediates growth-promoting signals against oxidative stress through Nrf2-HO-1.Oncogenesis201982710.1038/s41389‑018‑0116‑9 30647407
    [Google Scholar]
  32. CharanJ. GoyalJ. SaxenaD. YadavP. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis.J. Pharmacol. Pharmacother.20123430030310.4103/0976‑500X.103685 23326099
    [Google Scholar]
  33. KikuchiA.M. TanabeA. IwahoriY. A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning.J. Diet. Suppl.202118331633310.1080/19390211.2020.1746725 32272859
    [Google Scholar]
  34. WangY.J. PanK.L. HsiehT.C. ChangT.Y. LinW.H. HsuJ.T.A. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus.J. Nat. Prod.201174458058410.1021/np100578u 21391660
    [Google Scholar]
  35. ChunO.K. FloegelA. ChungS.J. ChungC.E. SongW.O. KooS.I. Estimation of antioxidant intakes from diet and supplements in U.S. adults.J. Nutr.2010140231732410.3945/jn.109.114413 20032488
    [Google Scholar]
  36. Colunga BiancatelliR.M.L. BerrillM. CatravasJ.D. MarikP.E. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19).Front. Immunol.202011145110.3389/fimmu.2020.01451 32636851
    [Google Scholar]
  37. CorrêaA.P.F. DaroitD.J. FontouraR. MeiraS.M.M. SegalinJ. BrandelliA. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities.Peptides201461485510.1016/j.peptides.2014.09.001 25218972
    [Google Scholar]
  38. KimK.H. LeeE.N. ParkJ.K. Curcumin attenuates TNF-α-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells.Phytother. Res.20122671037104710.1002/ptr.3694 22183741
    [Google Scholar]
  39. CrumpK.E. LangstonP.K. RajkarnikarS. GraysonJ.M. Antioxidant treatment regulates the humoral immune response during acute viral infection.J. Virol.20138752577258610.1128/JVI.02714‑12 23255789
    [Google Scholar]
  40. KreiderR.B. StoutJ.R. Creatine in health and disease.Nutrients202113244710.3390/nu13020447 33572884
    [Google Scholar]
  41. CuiD. StephensenC.B. MoldoveanuZ. High-level dietary vitamin A enhances T-helper type 2 cytokine production and secretory immunoglobulin A response to influenza A virus infection in BALB/c mice.J. Nutr.200013051132113910.1093/jn/130.5.1132 10801909
    [Google Scholar]
  42. AshiqueS. SandhuN.K. HaqueS.N. KoleyK. A Recent Update on Therapeutics to Treat Emerging n-COVID 19: A Review.Coronaviruses202127e25062118872410.2174/2666796701999201204123259
    [Google Scholar]
  43. DemirS. AtayogluA.T. GaleottiF. Antiviral activity of different extracts of standardized propolis preparations against HSV.Antivir. Ther.202025735336310.3851/IMP3383 33620334
    [Google Scholar]
  44. LiaoM.T. WuC.C. WuS.F.V. Resveratrol as an adjunctivetherapy for excessive oxidative stress in aging COVID-19 patients.Antioxidants2021109144010.3390/antiox10091440 34573071
    [Google Scholar]
  45. DerosaG. MaffioliP. D’AngeloA. Di PierroF. A role for quercetin in coronavirus disease 2019 (COVID‐19).Phytother. Res.20213531230123610.1002/ptr.6887 33034398
    [Google Scholar]
  46. Domínguez-PerlesR. MenaP. García-VigueraC. MorenoD.A. Brassica foods as a dietary source of vitamin C: a review.Crit. Rev. Food Sci. Nutr.20145481076109110.1080/10408398.2011.626873 24499123
    [Google Scholar]
  47. AshiqueS. ChaudharyV. PalS. Marburg virus-a threat during SARS-CoV-2 era: A review.Infect. Disord. Drug Targets202323513
    [Google Scholar]
  48. FenwickG.R. HanleyA.B. WhitakerJ.R. The genus allium— part 1.CRC Crit. Rev. Food Sci. Nutr.198522319927110.1080/10408398509527415 3902370
    [Google Scholar]
  49. LindsethG. HellandB. CaspersJ. The effects of dietary tryptophan on affective disorders.Arch. Psychiatr. Nurs.201529210210710.1016/j.apnu.2014.11.008 25858202
    [Google Scholar]
  50. AshiqueS. MishraN. MohantoS. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects.Heliyon2024104e2575410.1016/j.heliyon.2024.e25754 38370192
    [Google Scholar]
  51. HennetT. PeterhansE. StockerR. Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus.J. Gen. Virol.1992731394610.1099/0022‑1317‑73‑1‑39 1530963
    [Google Scholar]
  52. PaudelK.R. PatelV. VishwasS. Nutraceuticals and COVID‐19: A mechanistic approach toward attenuating the disease complications.J. Food Biochem.20224612e1444510.1111/jfbc.14445 36239436
    [Google Scholar]
  53. Lopez-SantamarinaA. LamasA. del Carmen MondragónA. Probiotic effects against virus infections: new weapons for an old war.Foods202110113010.3390/foods10010130 33435315
    [Google Scholar]
  54. GarofaloR.P. KolliD. CasolaA. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities.Antioxid. Redox Signal.201318218621710.1089/ars.2011.4307 22799599
    [Google Scholar]
  55. LordanR. RandoH.M. GreeneC.S. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment.mSystems202163e00122e2110.1128/mSystems.00122‑21 33947804
    [Google Scholar]
  56. GhazalS.A. AbuzarquaM. MahansnehA.M. Effect of plant flavonoids on immune and inflammatory cell function.Phytother. Res.1992226527110.1002/ptr.2650060509
    [Google Scholar]
  57. MohanS. Elhassan TahaM.M. MakeenH.A. Bioactive natural antivirals: An updated review of the available plants and isolated molecules.Molecules20202521487810.3390/molecules25214878 33105694
    [Google Scholar]
  58. MeinhardtJ. RadkeJ. DittmayerC. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.Nat. Neurosci.202124216817510.1038/s41593‑020‑00758‑5 33257876
    [Google Scholar]
  59. GillilandF.D. BerhaneK.T. LiY.F. GaudermanW.J. McConnellR. PetersJ. Children’s lung function and antioxidant vitamin, fruit, juice, and vegetable intake.Am. J. Epidemiol.2003158657658410.1093/aje/kwg181 12965883
    [Google Scholar]
  60. AruomaO.I. SpencerJ.P.E. RossiR. An evaluation of the antioxidant and antiviral action of extracts of rosemary and provençal herbs.Food Chem. Toxicol.199634544945610.1016/0278‑6915(96)00004‑X 8655093
    [Google Scholar]
  61. MockingR.J.T. HarmsenI. AssiesJ. KoeterM.W.J. RuhéH.G. ScheneA.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder.Transl. Psychiatry201663e75610.1038/tp.2016.29 26978738
    [Google Scholar]
  62. HalliwellB. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?Arch. Biochem. Biophys.2008476210711210.1016/j.abb.2008.01.028 18284912
    [Google Scholar]
  63. MorganC.I. LedfordJ.R. ZhouP. PageK. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen.J. Inflamm. (Lond.)2011813610.1186/1476‑9255‑8‑36 22151973
    [Google Scholar]
  64. HanS.N. WuD. HaW.K. Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus.Immunology2000100448749310.1046/j.1365‑2567.2000.00070.x 10929076
    [Google Scholar]
  65. MostafaW.Z. HegazyR.A. Vitamin D and the skin: Focus on a complex relationship: A review.J. Adv. Res.20156679380410.1016/j.jare.2014.01.011 26644915
    [Google Scholar]
  66. HeY.Q. CaiL. QianQ.G. Anti-influenza A (H1N1) viral and cytotoxic sesquiterpenes from Carpesium abrotanoides.Phytochem. Lett.202035414510.1016/j.phytol.2019.10.013
    [Google Scholar]
  67. NamiM. MehrabiS. KamaliA.M. A new hypothesis on anxiety, sleep insufficiency, and viral infections; reciprocal links to consider in today’s “world vs. COVID-19” endeavors.Front. Psychiatry20201158589310.3389/fpsyt.2020.585893 33250794
    [Google Scholar]
  68. HemiläH. CarrA. ChalkerE. Vitamin C may increase the recovery rate of outpatient cases of SARS-CoV-2 infection by 70%: reanalysis of the COVID A to Z randomized clinical trial.Front. Immunol.20211267468110.3389/fimmu.2021.674681 34040614
    [Google Scholar]
  69. PeterhansE. Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation.J. Nutr.19971275Suppl.962S965S10.1093/jn/127.5.962S 9164274
    [Google Scholar]
  70. NiempoogS. PawaK.K. AmatyakulC. The efficacy of powdered ginger in osteoarthritis of the knee.J. Med. Assoc. Thai.201295Suppl. 1S59S64 23964445
    [Google Scholar]
  71. OlaimatA.N. AolymatI. Al-HolyM. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19.NPJ Sci. Food20204117
    [Google Scholar]
  72. HolasovaM. FiedlerovaV. SmrcinovaH. OrsakM. LachmanJ. VavreinovaS. Buckwheat—the source of antioxidant activity in functional foods.Food Res. Int.2002352-320721110.1016/S0963‑9969(01)00185‑5
    [Google Scholar]
  73. ChamsN. ChamsS. BadranR. COVID-19: a multidisciplinary review.Front. Public Health2020838310.3389/fpubh.2020.00383 32850602
    [Google Scholar]
  74. HosakoteY.M. JantziP.D. EshamD.L. Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis.Am. J. Respir. Crit. Care Med.2011183111550156010.1164/rccm.201010‑1755OC 21471094
    [Google Scholar]
  75. AshiqueS. KumarS. HussainA. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer.J. Health Popul. Nutr.20234217410.1186/s41043‑023‑00423‑0 37501216
    [Google Scholar]
  76. PatelS.S. AcharyaA. RayR.S. AgrawalR. RaghuwanshiR. JainP. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease.Crit. Rev. Food Sci. Nutr.202060688793910.1080/10408398.2018.1552244 30632782
    [Google Scholar]
  77. WuS.F. LinC.K. ChuangY.S. Anti‐hepatitis C virus activity of 3‐hydroxy caruilignan C from Swietenia macrophylla stems.J. Viral Hepat.201219536437010.1111/j.1365‑2893.2011.01558.x 22497816
    [Google Scholar]
  78. HusseinF.A. ChayS.Y. ZareiM. Whey protein concentrate as a novel source of bifunctional peptides with angiotensin-I converting enzyme inhibitory and antioxidant properties: RSM study.Foods2020916410.3390/foods9010064 31936191
    [Google Scholar]
  79. ProalA.D. VanElzakkerM.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms.Front. Microbiol.20211269816910.3389/fmicb.2021.698169 34248921
    [Google Scholar]
  80. GasmiA. MujawdiyaP.K. LysiukR. Quercetin in the prevention and treatment of coronavirus infections: a focus on SARS-CoV-2.Pharmaceuticals (Basel)2022159104910.3390/ph15091049 36145270
    [Google Scholar]
  81. QinC. ZhouL. HuZ. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China.Clin. Infect. Dis.2020711576276810.1093/cid/ciaa248 32161940
    [Google Scholar]
  82. KaganV. PackerzL. SerbinovaE. BakalovaR. StoyanovskyD. Mechanisms of vitamin E control of lipid peroxidation: regeneration, synergism, asymmetry, migration and metal chelation.Biological Oxidation Systems20122889
    [Google Scholar]
  83. SrivastavaS. KumarS. AshiqueS. Fast-Spreading JN.1: What You Need to Know About the Latest COVID-19 Subvariant.J. Infect. Public Health202417710245110.1016/j.jiph.2024.05.039 38838605
    [Google Scholar]
  84. AshiqueS MishraN GargA A Critical Review on the Long- Term COVID-19 Impacts on Patients With Diabetes. Am J Med2024S0002-9343(24)00133-510.1016/j.amjmed.2024.02.029 38485111
    [Google Scholar]
  85. KapoorR. SharmaB. KanwarS.S. Antiviral phytochemicals: an overview.Biochem. Physiol.201762710.4172/2168‑9652.1000220
    [Google Scholar]
  86. RomanM. IrwinM.R. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far.Brain Behav. Immun.20208372110.1016/j.bbi.2019.09.016 31550500
    [Google Scholar]
  87. GhildiyalR. PrakashV. ChaudharyV.K. GuptaV. GabraniR. Phytochemicals as antiviral agents: Recent updates.Plant-derived Bioactives.Springer202010.1007/978‑981‑15‑1761‑7_12
    [Google Scholar]
  88. Saeedi-BoroujeniA. Mahmoudian-SaniM.R. Anti-inflammatory potential of Quercetin in COVID-19 treatment.J. Inflamm. (Lond.)2021181310.1186/s12950‑021‑00268‑6 33509217
    [Google Scholar]
  89. ShakoorH. FeehanJ. Al DhaheriA.S. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?Maturitas20211431910.1016/j.maturitas.2020.08.003 33308613
    [Google Scholar]
  90. KeilS.D. RaganI. YonemuraS. HartsonL. DartN.K. BowenR. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light‐based photochemical treatment.Vox Sang.2020115649550110.1111/vox.12937 32311760
    [Google Scholar]
  91. KelseyN.A. WilkinsH.M. LinsemanD.A. Nutraceutical antioxidants as novel neuroprotective agents.Molecules201015117792781410.3390/molecules15117792 21060289
    [Google Scholar]
  92. SharmaS. BatraS. GuptaS. SharmaV.K. RahmanM.H. KamalM.A. Persons with co-existing neurological disorders: risk analysis, considerations and management in COVID-19 pandemic.CNS Neurol. Disord. Drug Targets2022213228234
    [Google Scholar]
  93. KhareD. GodboleN.M. PawarS.D. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells.Eur. J. Nutr.20135241405141510.1007/s00394‑012‑0449‑7 23015061
    [Google Scholar]
  94. AlipioM. Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-19).SSRN20203571484
    [Google Scholar]
  95. XuX. ChenP. WangJ. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.Sci. China Life Sci.202063345746010.1007/s11427‑020‑1637‑5 32009228
    [Google Scholar]
  96. Malek MahdaviA. A brief review of interplay between vitamin D and angiotensin‐converting enzyme 2: Implications for a potential treatment for COVID ‐19.Rev. Med. Virol.2020305e211910.1002/rmv.2119 32584474
    [Google Scholar]
  97. GetachewB. TizabiY. Vitamin D and COVID‐19: Role of ACE2, age, gender, and ethnicity.J. Med. Virol.20219395285529410.1002/jmv.27075 33990955
    [Google Scholar]
  98. SlominskiR.M. StefanJ. AtharM. COVID‐19 and Vitamin D: A lesson from the skin.Exp. Dermatol.202029988589010.1111/exd.14170 32779213
    [Google Scholar]
  99. KhanalP. PatilB.M. In vitro and in silico anti-oxidant, cytotoxicity and biological activities of Ficus benghalensis and Duranta repens.Chin. Herb. Med.202012440641310.1016/j.chmed.2020.02.004 36120176
    [Google Scholar]
  100. MilevaM. BakalovaR. TanchevaL. GalabovA. RibarovS. Effect of vitamin E supplementation on lipid peroxidation in blood and lung of influenza virus infected mice.Comp. Immunol. Microbiol. Infect. Dis.200225111110.1016/S0147‑9571(01)00010‑8 11831742
    [Google Scholar]
  101. Ramos-MartínezE. López-VancellM.R. Fernández de Córdova-AguirreJ.C. Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression.Cytokine201810823924610.1016/j.cyto.2018.01.001 29402723
    [Google Scholar]
  102. KhubberS. HashemifesharakiR. MohammadiM. GharibzahediS.M.T. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19.Nutr. J.202019112410.1186/s12937‑020‑00643‑8 33208167
    [Google Scholar]
  103. SundararamanA. RayM. RavindraP.V. HalamiP.M. Role of probiotics to combat viral infections with emphasis on COVID-19.Appl. Microbiol. Biotechnol.2020104198089810410.1007/s00253‑020‑10832‑4 32813065
    [Google Scholar]
  104. ter EllenB.M. Dinesh KumarN. BoumaE.M. Resveratrol and pterostilbene inhibit SARS-CoV-2 replication in air–liquid interface cultured human primary bronchial epithelial cells.Viruses2021137133510.3390/v13071335 34372541
    [Google Scholar]
  105. SubediL. TchenS. GaireB.P. HuB. HuK. Adjunctive nutraceutical therapies for COVID-19.Int. J. Mol. Sci.2021224196310.3390/ijms22041963 33669456
    [Google Scholar]
  106. KieliszekM. LipinskiB. Selenium supplementation in the prevention of coronavirus infections (COVID-19).Med. Hypotheses202014310987810.1016/j.mehy.2020.109878 32464491
    [Google Scholar]
  107. VaishyaR. JainV.K. IyengarK.P. Musculoskeletal manifestations of COVID-19.J. Clin. Orthop. Trauma20211728028110.1016/j.jcot.2021.03.002 33716426
    [Google Scholar]
  108. ValizadehH Abdolmohammadi-vahidS DanshinaS Nanocurcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol202089Pt B10708810.1016/j.intimp.2020.107088 33129099
    [Google Scholar]
  109. KokateC.K. PurohitA.P. GokhaleS.B. Nutraceutical and Cosmaceutical.Pharmacognosy.21st edPune, IndiaNiraliPrakashan2002542549
    [Google Scholar]
  110. KoushkiM. Amiri-DashatanN. AhmadiN. AbbaszadehH.A. Rezaei-TaviraniM. Resveratrol: A miraculous natural compound for diseases treatment.Food Sci. Nutr.2018682473249010.1002/fsn3.855 30510749
    [Google Scholar]
  111. LinS.C. HoC.T. ChuoW.H. LiS. WangT.T. LinC.C. Effective inhibition of MERS-CoV infection by resveratrol.BMC Infect. Dis.201717114410.1186/s12879‑017‑2253‑8 28193191
    [Google Scholar]
  112. AmbraR. MelloniS. VenneriaE. Could selenium supplementation prevent COVID-19? A comprehensive review of available studies.Molecules20232810413010.3390/molecules28104130 37241870
    [Google Scholar]
  113. SadeghizadehM. AsadollahiE. JahangiriB. Promising clinical outcomes of nano‐curcumin treatment as an adjunct therapy in hospitalized COVID ‐19 patients: A randomized, double‐blinded, placebo‐controlled trial.Phytother. Res.20233783631364410.1002/ptr.7844 37118944
    [Google Scholar]
  114. McCrearyM.R. SchnellP.M. RhodaD.A. Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19).Sci. Rep.20221211097810.1038/s41598‑022‑13920‑9 35768453
    [Google Scholar]
  115. GiordoR. ZinelluA. EidA.H. PintusG. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders.Molecules202126485610.3390/molecules26040856 33562030
    [Google Scholar]
  116. NagaiT. MiyaichiY. TomimoriT. SuzukiY. YamadaH. In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase.Antiviral Res.199219320721710.1016/0166‑3542(92)90080‑O 1444327
    [Google Scholar]
  117. NamaziR. ZabihollahiR. BehbahaniM. RezaeiA. Inhibitory activity of Avicennia marina, a medicinal plant in Persian folk medicine, against HIV and HSV. Iranian journal of pharmaceutical research.Iran. J. Pharm. Res.2013122435443 24250619
    [Google Scholar]
  118. AhovègbéL.Y. OgwangP.E. PeterE.L. Therapeutic potentials of Vachellia nilotica (L.) extracts in Hepatitis C infection: A review.Sci. Am.202113e00918
    [Google Scholar]
  119. HusseinG. MiyashiroH. NakamuraN. HattoriM. KakiuchiN. ShimotohnoK. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease.Phytother. Res.200014751051610.1002/1099‑1573(200011)14:7<510:AID‑PTR646>3.0.CO;2‑B 11054840
    [Google Scholar]
  120. ChengP.W. NgL.T. ChiangL.C. LinC.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro.Clin. Exp. Pharmacol. Physiol.200633761261610.1111/j.1440‑1681.2006.04415.x 16789928
    [Google Scholar]
  121. ToulabiT. DelfanB. RashidipourM. The efficacy of olive leaf extract on healing herpes simplex virus labialis: A randomized double-blind study.Explore (NY)202218328729210.1016/j.explore.2021.01.003 33541815
    [Google Scholar]
  122. SaderiH. AbbasiM. Evaluation of anti-adenovirus activity of some plants from Lamiaceae family grown in Iran in cell culture.Afr. J. Biotechnol.201110761754617550
    [Google Scholar]
  123. AliS.I. SheikhW.M. RatherM.A. VenkatesaluV. Muzamil BashirS. NabiS.U. Medicinal plants: Treasure for antiviral drug discovery.Phytother. Res.20213573447348310.1002/ptr.7039 33590931
    [Google Scholar]
  124. WooM.S. MalsyJ. PöttgenJ. Frequent neurocognitive deficits after recovery from mild COVID-19.Brain Commun.202022fcaa20510.1093/braincomms/fcaa205 33376990
    [Google Scholar]
  125. KhaliqB. AliN. AkremA. Medicinal plants against COVID-19.The COVID-19 Pandemic.Apple Academic Press2022
    [Google Scholar]
  126. LiY.H. LaiC.Y. SuM.C. ChengJ.C. ChangY.S. Antiviral activity of Portulaca oleracea L. against influenza A viruses.J. Ethnopharmacol.201924111201310.1016/j.jep.2019.112013 31170517
    [Google Scholar]
  127. EspinozaT. ValenciaE. AlbarránM. Garlic (Allium sativum L) and Its beneficial properties for health: A review.Agro Sci.2020101103115
    [Google Scholar]
  128. DelgadoY. CasséC. Ferrer-AcostaY. Biomedical effects of the phytonutrients turmeric, garlic, cinnamon, graviola, and oregano: A comprehensive review.Appl. Sci. (Basel)20211118847710.3390/app11188477
    [Google Scholar]
  129. ZengZ.Y. FengS.D. ChenG.P. WuJ.N. Predictive value of the neutrophil to lymphocyte ratio for disease deterioration and serious adverse outcomes in patients with COVID-19: a prospective cohort study.BMC Infect. Dis.20212118010.1186/s12879‑021‑05796‑3 33461497
    [Google Scholar]
  130. LinC.J. ChenT.L. TsengY.Y. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway.Toxicol. Appl. Pharmacol.2016304596910.1016/j.taap.2016.05.018 27236003
    [Google Scholar]
  131. Seyed HosseiniE. Riahi KashaniN. NikzadH. AzadbakhtJ. Hassani BafraniH. Haddad KashaniH. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies.Virology20205511910.1016/j.virol.2020.08.011 33010669
    [Google Scholar]
  132. HenryB.M. de OliveiraM.H.S. BenoitS. PlebaniM. LippiG. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis.Clin. Chemistry and Laboratory Medicine (CCLM)20205871021102810.1515/cclm‑2020‑0369 32286245
    [Google Scholar]
  133. RahimkhaniM. NikfalahA. SaberianM. MordadiA. VarmazyarS. TavakoliA. Urinary tract infection in spinal cord injurieS.Asian J. Pharm. Clin. Res.201472178182
    [Google Scholar]
  134. GuoW. SongY. SongW. Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy.Sci. Rep.2020101783210.1038/s41598‑020‑64828‑1 32398729
    [Google Scholar]
  135. IslamH. ChamberlainT.C. MuiA.L. LittleJ.P. Elevated interleukin-10 levels in COVID-19: potentiation of pro-inflammatory responses or impaired anti-inflammatory action?Front. Immunol.20211267700810.3389/fimmu.2021.677008 34234779
    [Google Scholar]
  136. LipipunV. KurokawaM. SuttisriR. Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo.Antiviral Res.200360317518010.1016/S0166‑3542(03)00152‑9 14638393
    [Google Scholar]
  137. ParasherA. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment.Postgrad. Med. J.202197114731232010.1136/postgradmedj‑2020‑138577 32978337
    [Google Scholar]
  138. KhanA. IqtadarS. MumtazS.U. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19—Results from a pilot open-label, randomized controlled trial.Front. Pharmacol.20221389806210.3389/fphar.2022.898062 35747751
    [Google Scholar]
  139. LiuF. ZhuY. ZhangJ. LiY. PengZ. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial.BMJ Open2020107e03951910.1136/bmjopen‑2020‑039519 32641343
    [Google Scholar]
  140. Saber-MoghaddamN. SalariS. HejaziS. Oral nano‐curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease ‐19 patients: An open label nonrandomized clinical trial.Phytother. Res.20213552616262310.1002/ptr.7004 33389761
    [Google Scholar]
  141. LucasK. Fröhlich-NowoiskyJ. OppitzN. AckermannM. Cinnamon and hop extracts as potential immunomodulators for severe COVID-19 cases.Front Plant Sci20211258978310.3389/fpls.2021.589783 33719281
    [Google Scholar]
  142. MaarasyidC. MuhamadI.I. SupriyantoE. Potential source and extraction of vitamin E from palm-based oils: a review.J. Teknol.20146944310.11113/jt.v69.3172
    [Google Scholar]
  143. YakhchaliM. TaghipourZ. Mirabzadeh ArdakaniM. Alizadeh VaghaslooM. VazirianM. SadraiS. Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine.Biomed. Pharmacother.202114311222110.1016/j.biopha.2021.112221 34563952
    [Google Scholar]
  144. MahmoodN. PizzaC. AquinoR. Inhibition of HIV infection by flavanoids.Antiviral Res.1993222-318919910.1016/0166‑3542(93)90095‑Z 8279812
    [Google Scholar]
  145. MartineauA.R. JolliffeD.A. GreenbergL. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis.Health Technol. Assess.201923214410.3310/hta23020 30675873
    [Google Scholar]
  146. MenniC ValdesA FreydinMB .Loss of smell and taste in combination with other symptoms is a strong predictor of COVID- 19 infection. Nature Medicine 2020. Preprint
    [Google Scholar]
  147. LuL. XiongW. MuJ. The potential neurological effect of the COVID‐19 vaccines: A review.Acta Neurol. Scand.2021144131210.1111/ane.13417 33779985
    [Google Scholar]
  148. Di MatteoG. SpanoM. GrossoM. Food and COVID-19: preventive/co-therapeutic strategies explored by current clinical trials and in silico studies.Foods202098103610.3390/foods9081036 32752217
    [Google Scholar]
  149. VishwakarmaS. PanigrahiC. BaruaS. SahooM. MandliyaS. Food nutrients as inherent sources of immunomodulation during COVID-19 pandemic.Lebensm. Wiss. Technol.202215811315410.1016/j.lwt.2022.113154 35125518
    [Google Scholar]
  150. MrityunjayaM. PavithraV. NeelamR. JanhaviP. HalamiP.M. RavindraP.V. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19.Front. Immunol.20201157012210.3389/fimmu.2020.570122 33117359
    [Google Scholar]
  151. MorimotoR. HanadaA. MatsubaraC. Anti-influenza A virus activity of flavonoids in vitro: a structure–activity relationship.J. Nat. Med.202377121922710.1007/s11418‑022‑01660‑z 36357821
    [Google Scholar]
  152. McElvaneyO.J. HobbsB.D. QiaoD. A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19.EBioMedicine202061
    [Google Scholar]
  153. NagyS. Vitamin C contents of citrus fruit and their products: a review.J. Agric. Food Chem.198028181810.1021/jf60227a026 7358939
    [Google Scholar]
  154. KaiH. ObuchiM. YoshidaH. In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08).J. Funct. Foods2014821422310.1016/j.jff.2014.03.019
    [Google Scholar]
  155. NutanN. ModiM. DezzuttiC.S. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat.Virol. J.201310130910.1186/1743‑422X‑10‑309 25228267
    [Google Scholar]
  156. NarayanaK.R. ReddyS.M. ChaluvadiM.R. KrishnaD.R. Bioflavonoids classification, pharmacological Effects and therapeutic potential.Indian J. Pharmacol.20013321
    [Google Scholar]
  157. NicholsW.G. Peck CampbellA.J. BoeckhM. Respiratory viruses other than influenza virus: impact and therapeutic advances.Clin. Microbiol. Rev.200821227429010.1128/CMR.00045‑07 18400797
    [Google Scholar]
  158. PacielloF. FetoniA.R. MezzogoriD. The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity.Sci. Rep.2020101106310.1038/s41598‑020‑57965‑0 31913322
    [Google Scholar]
  159. PalaiS. ManaswiniD. Spices boosting immunity in COVID-19.Annal Phytomed Int J202020208096
    [Google Scholar]
  160. BhargavaP. MahantaD. KaulA. Experimental Evidence for Therapeutic Potentials of Propolis.Nutrients2021138252810.3390/nu13082528 34444688
    [Google Scholar]
  161. PleschkaS. SteinM. SchoopR. HudsonJ.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV).Virol. J.20096119710.1186/1743‑422X‑6‑197 19912623
    [Google Scholar]
  162. RaganI. HartsonL. PidcokeH. BowenR. GoodrichR. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light.PLoS One2020155e023394710.1371/journal.pone.0233947 32470046
    [Google Scholar]
  163. RahmanM.T. IdidS.Z. Can Zn be a critical element in COVID-19 treatment?Biol. Trace Elem. Res.2021199255055810.1007/s12011‑020‑02194‑9 32458149
    [Google Scholar]
  164. RanganR. ZheludevI.N. HageyR.J. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look.RNA202026893795910.1261/rna.076141.120 32398273
    [Google Scholar]
  165. RatherI.A. ChoiS.B. KamliM.R. Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2.Vaccines (Basel)2021910106710.3390/vaccines9101067 34696175
    [Google Scholar]
  166. StobieckaM. KrólJ. BrodziakA. Antioxidant activity of milk and dairy products.Animals (Basel)202212324510.3390/ani12030245 35158569
    [Google Scholar]
  167. Razeghi JahromiS. Moradi TabrizH. ToghaM. The correlation between serum selenium, zinc, and COVID-19 severity: an observational study.BMC Infect. Dis.202121189910.1186/s12879‑021‑06617‑3 34479494
    [Google Scholar]
  168. RomitaK. O’BrienR. Minerals: Their functions and sources.Health Alberta2018136
    [Google Scholar]
  169. MorebN.A. AlbandaryA. JaiswalS. JaiswalA.K. Fruits and vegetables in the management of underlying conditions for COVID-19 high-risk groups.Foods202110238910.3390/foods10020389 33578926
    [Google Scholar]
  170. DarbarS. SahaS. Immune boosting role of vitamins in prevention of COVID-19 infection.J Basic Pharm & Toxic20204215
    [Google Scholar]
  171. SawickaB. ZiaratiP. BehmaneshM. SkibaD. AdomD. Plants sources of vitamins against SARS-CoV-2.Coronavirus Drug Discovery.Elsevier2022
    [Google Scholar]
  172. ChandV. Nutrition as a key weapon in strengthening immune system relative to pandemic novel Coronavirus disease (COVID-19): A review.Int. J. Health Sci. Res.202010896104
    [Google Scholar]
  173. ShaikhZ. SundarrajanP. BhagtaneyL. Applicability of vitamins in the management of COVID-19: An overview.Annal Phytomed Int J2021101S65S76
    [Google Scholar]
  174. WeiX. PandoheeJ. XuB. Recent developments and emerging trends in dietary vitamin D sources and biological conversion.Crit. Rev. Food Sci. Nutr.202311710.1080/10408398.2023.2220793 37357915
    [Google Scholar]
  175. DarbarS. SahaS. AgarwalS. Immunomodulatory role of vitamin C, D and E to fight against COVID-19 infection through boosting immunity: a review.Parana Journal of Science and Education2021711018
    [Google Scholar]
  176. AwuchiC.G. TwinomuhweziT. AwuchiC.G. AmagwulaI.O. EgbunaC. Immune Foods for Fighting Coronavirus Disease-2019 (COVID-19). Medicinal Plants, Phytomedicines and Traditional Herbal Remedies for Drug Discovery and Development against.COVID-192023
    [Google Scholar]
  177. DhokA. ButolaL.K. AnjankarA. ShindeA.D.R. KuteP.K. JhaR.K. Role of vitamins and minerals in improving immunity during Covid-19 pandemic-A review.J. Evol. Med. Dent. Sci.20209322296230010.14260/jemds/2020/497
    [Google Scholar]
  178. Colin-OrtegaJ.C. González-PérezM. Analysis of the chemical-quantum interactions of some components of carrots versus sars-cov-2 proteins and their influence on COVID-19.World J. Pharm. Res.20209154149
    [Google Scholar]
  179. VermaV. YadavR. SinghZ. Importance of vitamin B and its effect on health during the COVID-19 pandemic period.Handbook of Research on Complexities, Management, and Governance in Healthcare.IGI Global2023
    [Google Scholar]
  180. TahmasebiS. El-EsawiM.A. MahmoudZ.H. RETRACTED: Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID‐19 patients.J. Cell. Physiol.202123675325533810.1002/jcp.30233 33372280
    [Google Scholar]
  181. TapparelC. SiegristF. PettyT.J. KaiserL. Picornavirus and enterovirus diversity with associated human diseases.Infect. Genet. Evol.20131428229310.1016/j.meegid.2012.10.016 23201849
    [Google Scholar]
  182. TheisenL.L. MullerC.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo.Antiviral Res.201294214715610.1016/j.antiviral.2012.03.006 22475498
    [Google Scholar]
  183. TverdislovV.A. El KaradaghiS. BucherD.J. ZakomirdinJ.A. KharitonenkovI.G. Interaction of influenza virus proteins with planar bilayer lipid membranes II. Effects of rimantadine and amantadine.Biochim. Biophys. Acta Biomembr.1984778227628010.1016/0005‑2736(84)90369‑9 6498193
    [Google Scholar]
  184. UrashimaM. SegawaT. OkazakiM. KuriharaM. WadaY. IdaH. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren.Am. J. Clin. Nutr.20109151255126010.3945/ajcn.2009.29094 20219962
    [Google Scholar]
  185. GuS. ChenY. WuZ. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza.Clin. Infect. Dis.202071102669267810.1093/cid/ciaa709 32497191
    [Google Scholar]
  186. YeohY.K. ZuoT. LuiG.C.Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19.Gut202170469870610.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  187. UsachevE.V. PyankovO.V. UsachevaO.V. AgranovskiI.E. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour.J. Aerosol Sci.201359223010.1016/j.jaerosci.2013.01.004
    [Google Scholar]
  188. Vázquez-CalvoÁ. Jiménez de OyaN. Martín-AcebesM.A. Garcia-MorunoE. SaizJ.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus.Front. Microbiol.20178131410.3389/fmicb.2017.01314 28744282
    [Google Scholar]
  189. VigneshR. SwathirajanC.R. TunZ.H. RameshkumarM.R. SolomonS.S. BalakrishnanP. Could perturbation of gut microbiota possibly exacerbate the severity of COVID-19 via cytokine storm?Front. Immunol.20211160773410.3389/fimmu.2020.607734 33569053
    [Google Scholar]
  190. WangT.T. NestelF.P. BourdeauV. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression.J. Immunol.200417352909291210.4049/jimmunol.173.5.2909 15322146
    [Google Scholar]
  191. WangW. JinY. ZengN. RuanQ. QianF. SOD2 facilitates the antiviral innate immune response by scavenging reactive oxygen species.Viral Immunol.201730858258910.1089/vim.2017.0043 28574756
    [Google Scholar]
  192. WeinbergJ.B. ShugarsD.C. ShermanP.A. SaulsD.L. FyfeJ.A. Cobalamin inhibition of HIV-1 integrase and integration of HIV-1 DNA into cellular DNA.Biochem. Biophys. Res. Commun.1998246239339710.1006/bbrc.1998.8629 9610370
    [Google Scholar]
  193. WengJ.R. LinC.S. LaiH.C. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63.Virus Res.201927319776710.1016/j.virusres.2019.197767 31560964
    [Google Scholar]
  194. WesselsI. RollesB. RinkL. The potential impact of zinc supplementation on COVID-19 pathogenesis.Front. Immunol.202011171210.3389/fimmu.2020.01712 32754164
    [Google Scholar]
  195. WuD. YangX.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib.J. Microbiol. Immunol. Infect.202053336837010.1016/j.jmii.2020.03.005 32205092
    [Google Scholar]
  196. YosriN. Abd El-WahedA.A. GhonaimR. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2.Foods2021108177610.3390/foods10081776 34441553
    [Google Scholar]
  197. YoungG.A.Jr UnderdahlN.R. CarpenterL.E. Vitamin D intake and susceptibility of mice to experimental swine influenza virus infection.Exp. Biol. Med. (Maywood)194972369569710.3181/00379727‑72‑17545 15400837
    [Google Scholar]
  198. YuanJ. LiuJ. HuY. The immunological activity of propolis flavonoids liposome on the immune response against ND vaccine.Int. J. Biol. Macromol.201251440040510.1016/j.ijbiomac.2012.06.002 22705053
    [Google Scholar]
  199. ZabetakisI. LordanR. NortonC. TsouprasA. COVID-19: the inflammation link and the role of nutrition in potential mitigation.Nutrients2020125146610.3390/nu12051466 32438620
    [Google Scholar]
  200. ZandiK. TaherzadehM. YaghoubiR. TajbakhshS. RastianZ. SartaviK. Antiviral activity of Avicennia marina against herpes simplex virus type 1 and vaccine strain of poliovirus (An in vitro study).J. Med. Plants Res.20093771775
    [Google Scholar]
  201. ZareieA. SoleimaniD. AskariG. Cinnamon: A promising natural product against COVID-19.Adv. Exp. Med. Biol.20211327191195
    [Google Scholar]
  202. ZelkoI.N. MarianiT.J. FolzR.J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression.Free Radic. Biol. Med.200233333734910.1016/S0891‑5849(02)00905‑X 12126755
    [Google Scholar]
  203. RahimkhaniM MordadiAR Survey of the Lethal Effect of Ciprofloxacin and Supernatant Isolated from Staphylococcus Aureus under the Stress of Ciprofloxacin on Methicillin-Resistant Staphylococcus Aureus Strains Isolated from Clinical Specimens. J payavard salamat202215657884
    [Google Scholar]
  204. Pérez-TorradoR. QuerolA. Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products.Front. Microbiol.20166152210.3389/fmicb.2015.01522 26779173
    [Google Scholar]
  205. AtıcıS. SoysalA. Karadeniz CeritK. Catheter-related Saccharomyces cerevisiae Fungemia Following Saccharomyces boulardii Probiotic Treatment: In a child in intensive care unit and review of the literature.Med. Mycol. Case Rep.201715333510.1016/j.mmcr.2017.02.002 28280685
    [Google Scholar]
  206. PintoG. LimaL. PedraT. AssumpçãoA. MorgadoS. MascarenhasL. Bloodstream infection by Saccharomyces cerevisiae in a COVID-19 patient receiving probiotic supplementation in the ICU in Brazil.Access Microbiol.20213800025010.1099/acmi.0.000250 34888480
    [Google Scholar]
  207. VentoulisI. SarmourliT. AmoiridouP. Bloodstream infection by Saccharomyces cerevisiae in two COVID-19 patients after receiving supplementation of Saccharomyces in the ICU.J. Fungi (Basel)2020639810.3390/jof6030098 32630111
    [Google Scholar]
  208. RamosL. MokusL. FrotaH. SARS-CoV-2 Post-Infection and Sepsis by Saccharomyces cerevisiae: A Fatal Case Report—Focus on Fungal Susceptibility and Potential Virulence Attributes.Trop. Med. Infect. Dis.2023829910.3390/tropicalmed8020099 36828515
    [Google Scholar]
  209. HungY.P. LeeC.C. LeeJ.C. TsaiP.J. KoW.C. Gut dysbiosis during COVID-19 and potential effect of probiotics.Microorganisms202198160510.3390/microorganisms9081605 34442684
    [Google Scholar]
  210. AnnweilerC. BeaudenonM. GautierJ. COVID-19 and high-dose Vitamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): study protocol for a randomized controlled trial.Trials2020211103110.1186/s13063‑020‑04928‑5 33371905
    [Google Scholar]
  211. HassaniazadM. EftekharE. InchehsablaghB.R. A triple‐blind, placebo‐controlled, randomized clinical trial to evaluate the effect of curcumin‐containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID ‐19 patients.Phytother. Res.202135116417642710.1002/ptr.7294 34541720
    [Google Scholar]
  212. Al SulaimanK. AljuhaniO. SalehK.B. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: a propensity score matched study.Sci. Rep.20211111764810.1038/s41598‑021‑96703‑y 34480041
    [Google Scholar]
  213. PatelO. ChinniV. El-KhouryJ. A pilot double‐blind safety and feasibility randomized controlled trial of high‐dose intravenous zinc in hospitalized COVID‐19 patients.J. Med. Virol.20219353261326710.1002/jmv.26895 33629384
    [Google Scholar]
  214. IvashkinV. FominV. MoiseevS. Efficacy of a Probiotic Consisting of Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium bifidum PDV 0903, Bifidobacterium longum subsp. infantis PDV 1911, and Bifidobacterium longum subsp. longum PDV 2301 in the Treatment of Hospitalized Patients with COVID-19: a Randomized Controlled Trial.Probiotics Antimicrob. Proteins202119 34643888
    [Google Scholar]
  215. CastrellónG.P. MartíG.T. AbreuA.T. Efficacy and safety of novel probiotic formulation in adult COVID-19 outpatients: A randomized, placebo-controlled clinical trial.medRxiv202110.1101/2021.05.20.21256954
    [Google Scholar]
  216. RenZ. JiaG. HeH. Antiviral effect of selenomethionine on porcine deltacoronavirus in pig kidney epithelial cells.Front. Microbiol.20221384674710.3389/fmicb.2022.846747 35242124
    [Google Scholar]
  217. TitoA. ColantuonoA. PironeL. Pomegranate peel extract as an inhibitor of SARS-CoV-2 spike binding to human ACE2 receptor (in vitro): A promising source of novel antiviral drugs.Front Chem.2021963818710.3389/fchem.2021.638187 33996744
    [Google Scholar]
  218. AttiaG.H. MoemenY.S. YounsM. IbrahimA.M. AbdouR. El RaeyM.A. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2.Colloids Surf. B Biointerfaces202120311172410.1016/j.colsurfb.2021.111724 33838582
    [Google Scholar]
  219. ZhaoZ. XiaoY. XuL. Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment.ACS Appl. Mater. Interfaces20211318209952100610.1021/acsami.1c02755 33930273
    [Google Scholar]
  220. GaylisN.B. KreychmanI. SaglianiJ. MograbiJ. GabetY. The results of a unique dietary supplement (nutraceutical formulation) used to treat the symptoms of long-haul COVID.Front. Nutr.20229103416910.3389/fnut.2022.1034169 36386945
    [Google Scholar]
  221. FaiyazuddinM. SophiaA. AshiqueS. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review.Front. Immunol.202314126450210.3389/fimmu.2023.1264502 37818370
    [Google Scholar]
  222. FragkouP.C. DimopoulouD. Serious complications of COVID-19 vaccines: A mini-review.Metabolism open202112100145
    [Google Scholar]
  223. HosseiniR. AskariN. A review of neurological side effects of COVID-19 vaccination.Eur. J. Med. Res.202328110210.1186/s40001‑023‑00992‑0 36841774
    [Google Scholar]
  224. ChatterjeeA. ChakravartyA. Neurological complications following COVID-19 vaccination.Curr. Neurol. Neurosci. Rep.202323111410.1007/s11910‑022‑01247‑x 36445631
    [Google Scholar]
  225. NotarteK.I. CatahayJ.A. VelascoJ.V. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review.EClinicalMedicine20225310162410.1016/j.eclinm.2022.101624 36051247
    [Google Scholar]
  226. AlsadiM.O. JohnV. Dermatological complications of COVID 19 vaccines: An updated review.Natl. J. Community Med.202314318018610.55489/njcm.140320232663
    [Google Scholar]
  227. GhasemiyehP. Mohammadi-SamaniS. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development.Virol. J.20242119810.1186/s12985‑024‑02370‑6 38671455
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265320091241017161919
Loading
/content/journals/iddt/10.2174/0118715265320091241017161919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test