Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Since the outbreak of coronavirus disease 2019 (COVID-19) in late 2019 and early 2020, the identification of drugs to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing focus of research. Cytokine storm and acute respiratory distress syndrome (ARDS) are the leading causes of mortality following infection. In this review, we discuss immune pathogenesis and four medications, including Remdesivir, Tocilizumab, Dexamethasone, and Annual SZ for COVID-19. A comparison of the effectiveness and therapeutic usage of drugs as reported in clinical trials and reports was made at different disease levels as well. Clinical studies indicate that Annual SZ with mild side effects was more affordable and might be more effective than other medications. Additionally, Annual SZ was capable of reducing the levels of pro-inflammatory cytokines as well as viral attachment and RNA replication.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265323116241104052004
2024-12-20
2025-11-03
Loading full text...

Full text loading...

References

  1. HajivaliliM. HosseiniM. Haji-FatahalihaM. Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges.Life Sci.202025711805810.1016/j.lfs.2020.118058 32653518
    [Google Scholar]
  2. LeeK-Y. RhimJ-W. KangJ-H. Immunopathogenesis of COVID-19 and early immunomodulators.Clin. Exp. Pediatr.2020637239250
    [Google Scholar]
  3. DhandR. LiJ. Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2.Am. J. Respir. Crit. Care Med.2020202565165910.1164/rccm.202004‑1263PP 32543913
    [Google Scholar]
  4. IslamM.A. KunduS. AlamS.S. HossanT. KamalM.A. HassanR. Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 17515 patients.PLoS One2021164e024978810.1371/journal.pone.0249788 33822812
    [Google Scholar]
  5. ZhouF. YuT. DuR. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑3 32171076
    [Google Scholar]
  6. IslamM.A. AlamS.S. KunduS. HossanT. KamalM.A. CavestroC. Prevalence of headache in patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 14,275 patients.Front. Neurol.20201156263410.3389/fneur.2020.562634 33329305
    [Google Scholar]
  7. SaniasiayaJ. IslamM.A. AbdullahB. Prevalence of olfactory dysfunction in coronavirus disease 2019 (COVID ‐19): A meta‐analysis of 27,492 patients.Laryngoscope2021131486587810.1002/lary.29286 33219539
    [Google Scholar]
  8. SaniasiayaJ. IslamM.A. AbdullahB. Prevalence and characteristics of taste disorders in cases of COVID-19: A meta-analysis of 29,349 patients.Otolaryngol. Head Neck Surg.20200194599820981018 33320033
    [Google Scholar]
  9. AgyemanA.A. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis.Mayo Clinic Proceedings.Elsevier202010.1016/j.mayocp.2020.05.030
    [Google Scholar]
  10. OranD.P. TopolE.J. The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review.Ann. Intern. Med.2021174565566210.7326/M20‑6976 33481642
    [Google Scholar]
  11. BendottiV. CicchinelliS. ConsoliL. Novel coronavirus (COVID-19) pneumonia complications: The importance of lung ultrasound.J. Ultrasound2019202014 32562109
    [Google Scholar]
  12. GaoY. DingM. DongX. Risk factors for severe and critically ill COVID‐19 patients.A review. Allergy202176242845510.1111/all.14657 33185910
    [Google Scholar]
  13. ZhengZ. PengF. XuB. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis.J. Infect.2020812e16e2510.1016/j.jinf.2020.04.021 32335169
    [Google Scholar]
  14. CummingsM.J. BaldwinM.R. AbramsD. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study.Lancet2020395102391763177010.1016/S0140‑6736(20)31189‑2 32442528
    [Google Scholar]
  15. Wendel GarciaP.D. FumeauxT. GuerciP. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort.EClinicalMedicine20202510044910.1016/j.eclinm.2020.100449 32838231
    [Google Scholar]
  16. ZavvarM. YahyapoorA. BaghdadiH. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches.Int. Immunopharmacol.202210710865510.1016/j.intimp.2022.108655 35248946
    [Google Scholar]
  17. SolerteS.B. Di SabatinoA. GalliM. FiorinaP. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19.Acta Diabetol.202057777978310.1007/s00592‑020‑01539‑z 32506195
    [Google Scholar]
  18. AhmedM.H. HassanA. Dexamethasone for the treatment of coronavirus disease (COVID-19): A review.SN Compr. Clin. Med.20202122637264610.1007/s42399‑020‑00610‑8 33163859
    [Google Scholar]
  19. HoffmannM. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell202018112271280
    [Google Scholar]
  20. WallsA.C. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.Cell20201812281292
    [Google Scholar]
  21. GuiM. SongW. ZhouH. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding.Cell Res.201727111912910.1038/cr.2016.152 28008928
    [Google Scholar]
  22. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  23. van EijkL.E. BinkhorstM. BourgonjeA.R. COVID ‐19: Immunopathology, pathophysiological mechanisms, and treatment options.J. Pathol.2021254430733110.1002/path.5642 33586189
    [Google Scholar]
  24. ZavvarM. KochakH.E. AbdolmohammadiK. Sars-CoV-2 and COVID-19, basic and clinical aspects of the human pandemic: A review.Iran. J. Public Health2021504665675 34183916
    [Google Scholar]
  25. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  26. ChenG. WuD. GuoW. Clinical and immunological features of severe and moderate coronavirus disease 2019.J. Clin. Invest.202013052620262910.1172/JCI137244 32217835
    [Google Scholar]
  27. WuF. ZhaoS. YuB. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑3 32015508
    [Google Scholar]
  28. YeQ. WangB. MaoJ. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19.J. Infect.202080660761310.1016/j.jinf.2020.03.037 32283152
    [Google Scholar]
  29. XuZ. ShiL. WangY. Pathological findings of COVID-19 associated with acute respiratory distress syndrome.Lancet Respir. Med.20208442042210.1016/S2213‑2600(20)30076‑X 32085846
    [Google Scholar]
  30. Post-COVID conditions 2021. Available from:https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Flong-term-effects.html
  31. ImprovementN. Managing COVID-19 symptoms (including at the end of life) in the community: Summary of NICE guidelines.BMJ20203691461
    [Google Scholar]
  32. Control CfD. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19) In: Coronavirus Disease (CoVID-19). National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases.2020
  33. DesaiA.D. LavelleM. BoursiquotB.C. WanE.Y. Long-term complications of COVID-19.Am. J. Physiol. Cell Physiol.20223221C1C1110.1152/ajpcell.00375.2021 34817268
    [Google Scholar]
  34. Chan Sui KoA. CandellierA. MercierM. Number of initial symptoms is more related to long COVID-19 than acute severity of infection: A prospective cohort of hospitalized patients.Int. J. Infect. Dis.202211822022310.1016/j.ijid.2022.03.006 35257903
    [Google Scholar]
  35. PapanikolaouV. ChrysovergisA. RagosV. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants.Gene202281414613410.1016/j.gene.2021.146134 34990799
    [Google Scholar]
  36. Coronavirus can infect you within 5 to 50 minutes: Study 2020. Available from:https://zeenews.india.com/coronavirus-can-infect-you-within-5-to-50-minutes-study-2286097.html
  37. Where and how people are contracting the virus. 2020. Available from:https://bsi.com.au/where-and-how-people-are-contracting-the-virus/
  38. Bar-OnY.M. A, Philips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers.eLife20209e57309
    [Google Scholar]
  39. YangL. LiuS. LiuJ. COVID-19: Immunopathogenesis and immunotherapeutics.Signal Transduct. Target. Ther.20205112810.1038/s41392‑020‑00243‑2 32712629
    [Google Scholar]
  40. TanakaT. NarazakiM. KishimotoT. Immunotherapeutic implications of IL-6 blockade for cytokine storm.Immunotherapy20168895997010.2217/imt‑2016‑0020 27381687
    [Google Scholar]
  41. MahmoodpoorA. HosseiniM. Soltani-ZangbarS. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression.Mol. Immunol.202113812112710.1016/j.molimm.2021.06.001 34392110
    [Google Scholar]
  42. DelshadM. TavakoliniaN. Pourbagheri-SigaroodiA. Safaroghli-AzarA. BagheriN. BashashD. The contributory role of lymphocyte subsets, pathophysiology of lymphopenia and its implication as prognostic and therapeutic opportunity in COVID-19.Int. Immunopharmacol.20219510758610.1016/j.intimp.2021.107586 33765611
    [Google Scholar]
  43. RajR. Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing.Biochem. Biophys. Rep.20212510084710.1016/j.bbrep.2020.100847 33364445
    [Google Scholar]
  44. SuryawanshiR.K. KogantiR. AgelidisA. Patil ChandrashekarD. ShuklaD. Dysregulation of cell signaling by SARS-CoV-2.Trends Microbiol.2020 33451855
    [Google Scholar]
  45. ZhangS.Y. ZhangL.Y. WenR. YangN. ZhangT.N. Histone deacetylases and their inhibitors in inflammatory diseases.Biomed. Pharmacother.202417911729510.1016/j.biopha.2024.117295 39146765
    [Google Scholar]
  46. Rosas-LemusM. MinasorG. ShuvalovaL. The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine.BioRxiv202010.1101/2020.04.17.047498
    [Google Scholar]
  47. GoelS. Saheb Sharif-AskariF. Saheb Sharif AskariN. SARS-CoV-2 switches ‘on’ MAPK and NFκB signaling via the reduction of nuclear DUSP1 and DUSP5 expression.Front. Pharmacol.20211263187910.3389/fphar.2021.631879 33995033
    [Google Scholar]
  48. PanH. PetoR. Henao-RestrepoA.M. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results.N. Engl. J. Med.2021384649751110.1056/NEJMoa2023184 33264556
    [Google Scholar]
  49. BeigelJ.H. TomashekK.M. DoddL.E. Remdesivir for the treatment of COVID-19.N. Engl. J. Med.2020383191813182610.1056/NEJMoa2007764 32445440
    [Google Scholar]
  50. FurutaY. KomenoT. NakamuraT. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201793744946310.2183/pjab.93.027 28769016
    [Google Scholar]
  51. ManabeT. KambayashiD. AkatsuH. KudoK. Favipiravir for the treatment of patients with COVID-19: A systematic review and meta-analysis.BMC Infect. Dis.202121148910.1186/s12879‑021‑06164‑x 34044777
    [Google Scholar]
  52. JudgeR. KolaskiS. QadeerF. Use of tocilizumab, remdesivir, and high-dose methylprednisolone prevents intubation in an ESRD patient with COVID-19 pneumonia.SAGE Open Med. Case Rep.202210
    [Google Scholar]
  53. AleemA. KothadiaJ. Remdesivir.In: StatPearls [Internet].Treasure IslandStatPearls2021
    [Google Scholar]
  54. AschenbrennerD.S. Remdesivir approved to treat COVID-19 amid controversy.Am. J. Nurs.20211211222410.1097/01.NAJ.0000731640.35662.2c 33350691
    [Google Scholar]
  55. GordonC.J. TchesnokovE.P. FengJ.Y. PorterD.P. Gِötte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus.J. Biol. Chem.2020295154773477910.1074/jbc.AC120.013056 32094225
    [Google Scholar]
  56. HashemianS.M.R. PourhanifehM.H. HamblinM.R. ShahrzadM.K. MirzaeiH. RdRp inhibitors and COVID-19: Is molnupiravir a good option?Biomed. Pharmacother.202214611251710.1016/j.biopha.2021.112517 34902743
    [Google Scholar]
  57. PicarazziF. VicentiI. SaladiniF. ZazziM. MoriM. Targeting the RdRp of emerging RNA viruses: The structure-based drug design challenge.Molecules20202523569510.3390/molecules25235695 33287144
    [Google Scholar]
  58. ShannonA. LeN.T.T. SeliskoB. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites.Antiviral Res.202017810479310.1016/j.antiviral.2020.104793 32283108
    [Google Scholar]
  59. GordonC.J. TchesnokovE.P. WoolnerE. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.J. Biol. Chem.2020295206785679710.1074/jbc.RA120.013679 32284326
    [Google Scholar]
  60. HumeniukR. MathiasA. KirbyB.J. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of Remdesivir, a SARS-CoV-2 replication inhibitor.Clin. Pharmacokinet.202160556958310.1007/s40262‑021‑00984‑5 33782830
    [Google Scholar]
  61. HuW-J. ChangL. YangY. Pharmacokinetics and tissue distribution of remdesivir and its metabolites nucleotide monophosphate, nucleotide triphosphate, and nucleoside in mice.Acta Pharmacol. Sin.202016 33041326
    [Google Scholar]
  62. HendausM.A. Remdesivir in the treatment of Coronavirus Disease 2019 (COVID-19): A simplified summary.J. Biomol. Struct. Dyn.202016 32396771
    [Google Scholar]
  63. ErogluE. ToprakC. Overview of favipiravir and remdesivir treatment for COVID-19.Int. J. Pharm. Sci. Res.202112419501957
    [Google Scholar]
  64. SinghA.K. SinghA. SinghR. MisraA. Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies.Diabetes Metab. Syndr.202014464164810.1016/j.dsx.2020.05.018 32428865
    [Google Scholar]
  65. GubernatorovaE.O. GorshkovaE.A. PolinovaA.I. DrutskayaM.S. IL-6: Relevance for immunopathology of SARS-CoV-2.Cytokine Growth Factor Rev.202053132410.1016/j.cytogfr.2020.05.009 32475759
    [Google Scholar]
  66. ZhangC. WuZ. LiJ.W. ZhaoH. WangG.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality.Int. J. Antimicrob. Agents202055510595410.1016/j.ijantimicag.2020.105954 32234467
    [Google Scholar]
  67. AzizM. HaghbinH. Abu SittaE. Efficacy of tocilizumab in COVID‐19: A systematic review and meta‐analysis.J. Med. Virol.20219331620163010.1002/jmv.26509 32918755
    [Google Scholar]
  68. Giamarellos-BourboulisE.J. Complex immune dysregulation in COVID-19 patients with severe respiratory failure.Cell Host Microbe20202769921000
    [Google Scholar]
  69. McGonagleD. SharifK. O’ReganA. BridgewoodC. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease.Autoimmun. Rev.202019610253710.1016/j.autrev.2020.102537 32251717
    [Google Scholar]
  70. MalgieJ. SchoonesJ.W. PijlsB.G. Decreased mortality in coronavirus disease 2019 patients treated with tocilizumab: A rapid systematic review and meta-analysis of observational studies.Clin. Infect. Dis.20217211e742e74910.1093/cid/ciaa1445 32964913
    [Google Scholar]
  71. SahaA. SharmaA.R. BhattacharyaM. SharmaG. LeeS.S. ChakrabortyC. Tocilizumab: A therapeutic option for the treatment of cytokine storm syndrome in COVID-19.Arch. Med. Res.202051659559710.1016/j.arcmed.2020.05.009 32482373
    [Google Scholar]
  72. AkleylekC. GürS.G. SeverI.H. What are the main factors affecting the outcome of tocilizumab therapy in COVID-19-induced cytokine release syndrome?Eur. J. Rheumatol.20229312613110.5152/eurjrheum.2022.21010 35156638
    [Google Scholar]
  73. Silpa-archaS. OrayM. PrebleJ.M. FosterC.S. Outcome of tocilizumab treatment in refractory ocular inflammatory diseases.Acta Ophthalmol.2016946e400e40610.1111/aos.13015 27010181
    [Google Scholar]
  74. BarlowA. LandolfK.M. BarlowB. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019.Pharmacotherapy202040541643710.1002/phar.2398 32259313
    [Google Scholar]
  75. HsuJ.Y. MaoY.C. LiuP.Y. LaiK.L. Pharmacology and adverse events of emergency-use authorized medication in moderate to severe COVID-19.Pharmaceuticals2021141095510.3390/ph14100955 34681179
    [Google Scholar]
  76. StoneJ.H. FrigaultM.J. Serling-BoydN.J. Efficacy of tocilizumab in patients hospitalized with COVID-19.N. Engl. J. Med.2020383242333234410.1056/NEJMoa2028836 33085857
    [Google Scholar]
  77. TleyjehI.M. KashourZ. DamlajM. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis.Clin. Microbiol. Infect.202127221522710.1016/j.cmi.2020.10.036 33161150
    [Google Scholar]
  78. JohnsonD.B. KelleyB. Dexamethasone.StatPearls.Treasure IslandStatPearls2019
    [Google Scholar]
  79. PatelS.K. SaikumarG. RanaJ. Dexamethasone: A boon for critically ill COVID-19 patients?Travel Med. Infect. Dis.20203710184410.1016/j.tmaid.2020.101844 32791213
    [Google Scholar]
  80. NewmanS.P. FlowerR.J. CroxtallJ.D. Dexamethasone suppression of IL-1 β-induced cyclooxygenase 2 expression is not mediated by lipocortin-1 in A549 cells.Biochem. Biophys. Res. Commun.1994202293193910.1006/bbrc.1994.2019 8048967
    [Google Scholar]
  81. SeoS. PrieferR. Dexamethasone mechanism in inflammatory immune mediated disease and its application in treating 2019 coronavirus disease (COVID-19).Med. Res. Arch.202081222910.18103/mra.v8i12.2267
    [Google Scholar]
  82. HorbyP. LimW.S. EmbersonJ.R. Dexamethasone in hospitalized patients with COVID-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa2021436 32678530
    [Google Scholar]
  83. GroupT.R.C. Dexamethasone in hospitalized patients with COVID-19—preliminary report.N. Engl. J. Med.2020
    [Google Scholar]
  84. SharunK. TiwariR. DhamaJ. DhamaK. Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence.Int. J. Surg.20208217918110.1016/j.ijsu.2020.08.038 32896649
    [Google Scholar]
  85. GongQ. YinJ. WangM. Comprehensive study of dexamethasone on albumin biogenesis during normal and pathological renal conditions.Pharm. Biol.20205811261127110.1080/13880209.2020.1855214 33332210
    [Google Scholar]
  86. DiederichS. HankeB. OelkersW. Bähr V. Metabolism of dexamethasone in the human kidney: Nicotinamide adenine dinucleotide-dependent 11β-reduction.J. Clin. Endocrinol. Metab.19978251598160210.1210/jcem.82.5.3936 9141556
    [Google Scholar]
  87. CzockD. KellerF. RascheF.M. Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids.Clin. Pharmacokinet.2005441619810.2165/00003088‑200544010‑00003 15634032
    [Google Scholar]
  88. AgrawalP. AgrawalC. BlundenG. RETRACTED: Artemisia extracts and artemisinin-based antimalarials for COVID-19 management: Could these be effective antivirals for COVID-19 treatment?Molecules20222712382810.3390/molecules27123828 35744958
    [Google Scholar]
  89. EfferthT. RomeroM.R. WolfD.G. StammingerT. MarinJ.J.G. MarschallM. The antiviral activities of artemisinin and artesunate.Clin. Infect. Dis.200847680481110.1086/591195 18699744
    [Google Scholar]
  90. AbiriR. Abdul-HamidH. SytarO. A brief overview of potential treatments for viral diseases using natural plant compounds: The case of SARS-CoV.Molecules20212613386810.3390/molecules26133868 34202844
    [Google Scholar]
  91. FuzimotoA.D. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment.J. Integr. Med.202119537538810.1016/j.joim.2021.07.003 34479848
    [Google Scholar]
  92. EfferthT. OeschF. The immunosuppressive activity of artemisinin‐type drugs towards inflammatory and autoimmune diseases.Med. Res. Rev.20214163023306110.1002/med.21842 34288018
    [Google Scholar]
  93. QianR.S. LiZ.L. YuJ.L. MaDJ. The immunologic and antiviral effect of qinghaosu.J. Tradit. Chin. Med.198224271276
    [Google Scholar]
  94. HaqF.U. RomanM. AhmadK. ARTEMISIA ANNUA: Trials are needed for COVID ‐19.Phytother. Res.202034102423242410.1002/ptr.6733 32424845
    [Google Scholar]
  95. RoltaR. SalariaD. SharmaP.P. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico Approach.Curr. Pharmacol. Rep.202074135149
    [Google Scholar]
  96. AherfiS. PradinesB. DevauxC. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV.Future Microbiol.202116171341137010.2217/fmb‑2021‑0019 34755538
    [Google Scholar]
  97. SehailiaM. ChematS. Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: Potential repurposing of artenimol for COVID-19.J. Biomol. Struct. Dyn.2020111 32696720
    [Google Scholar]
  98. BeigelJ.H. TomashekK.M. DoddL.E. Remdesivir for the treatment of COVID-19-preliminary report.N. Engl. J. Med.2020383191813182610.1056/NEJMoa2007764 32445440
    [Google Scholar]
  99. SalamaC. HanJ. YauL. Tocilizumab in patients hospitalized with COVID-19 pneumonia.N. Engl. J. Med.20213841203010.1056/NEJMoa2030340 33332779
    [Google Scholar]
  100. SelvarajV. KhanM.S. BavishiC. Tocilizumab in hospitalized patients with COVID-19: A meta analysis of randomized controlled trials.Lung2021199323924810.1007/s00408‑021‑00451‑9 34050796
    [Google Scholar]
  101. MarstonJ.L. GreenigM. SinghM. SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear nlms.JCI Insight2021624e14717010.1172/jci.insight.147170 34731091
    [Google Scholar]
  102. Al-AbdouhA. BizantiA. BarbarawiM. Remdesivir for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials.Contemp. Clin. Trials202110110627210.1016/j.cct.2021.106272 33422642
    [Google Scholar]
  103. Giménez-OrengaK. PierquinJ. BrunelJ. HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms.Front. Immunol.202213102006410.3389/fimmu.2022.1020064 36389746
    [Google Scholar]
  104. MedhiB. SarmaP. BhattacharyyaA. Efficacy and safety of steroid therapy in COVID-19: A rapid systematic review and Meta-analysis.Indian J. Pharmacol.202052653555010.4103/ijp.ijp_1146_20 33666200
    [Google Scholar]
  105. WenB. GoryckiP. Bioactivation of herbal constituents: Mechanisms and toxicological relevance.Drug Metab. Rev.201951445349710.1080/03602532.2019.1655570 31448961
    [Google Scholar]
  106. GuoX. ZhaoY. YouF. Identification and characterization of endogenous retroviruses upon SARS-CoV-2 infection.Front. Immunol.202415129402010.3389/fimmu.2024.1294020 38646531
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265323116241104052004
Loading
/content/journals/iddt/10.2174/0118715265323116241104052004
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Annual SZ; ARDs; COVID-19; drug; immunopathology; inflammation; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test