Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

SARS-CoV-2, also called coronavirus causes SARS-CoV-2 or severe acute respiratory syndrome, a highly transmissible disease that has rapidly spread worldwide, straining healthcare systems and leading to a substantial number of fatalities. Interestingly, SARS-CoV-2 has revealed a gender difference, with males dying at a greater rate and with more severe cases than women. It's worth noting that the male reproductive system might be particularly susceptible to damage during periods of moderate to severe sickness, which has been linked to cases of orchitis and erectile dysfunction. Furthermore, SARS-CoV-2 virus particles have been found in the tissues of the testes and penile of both living patients who have recovered from the virus and in post-mortem analyses of males who have died from it. For males who have recovered from SARS-CoV-2, sexual transmission is not a big concern, even though moderate to severe infections may have detrimental effects on male reproductive health. This includes the depletion of germ cells and Leydig cells that leads to a decrease in the formation of sperm, potentially decreasing the release of male sex hormones. These adverse effects may result in issues such as infertility and sexual dysfunction, which are of growing concern for couples looking to conceive or those in need of assisted reproduction. Numerous investigations have examined SARS-CoV-2's effects on male reproductive health from a variety of perspectives. The purpose of this review is to give a general summary of how SARS-CoV-2 has affected male reproductive health.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265323126241021044252
2024-12-20
2025-11-04
Loading full text...

Full text loading...

References

  1. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr202063411924
    [Google Scholar]
  2. MallahS.I. GhorabO.K. Al-SalmiS. COVID-19: Breaking down a global health crisis.Ann. Clin. Microbiol. Antimicrob.20212013510.1186/s12941‑021‑00438‑7 34006330
    [Google Scholar]
  3. RabaanA.A. SmajlovićS. TombulogluH. SARS-CoV-2 infection and multi-organ system damage: A review.Biomol. Biomed.20232313752 36124445
    [Google Scholar]
  4. delli Muti N, Finocchi F, Tossetta G, et al. Could SARS‐CoV‐2 infection affect male fertility and sexuality? Acta Pathol Microbiol Scand Suppl202213052435210.1111/apm.13210 35114008
    [Google Scholar]
  5. EnsorC.M. AlSirajY. ShoemakerR. SARS-CoV-2 spike protein regulation of angiotensin converting enzyme 2 and tissue renin-angiotensin systems: Influence of biologic sex.bioRxiv2021
    [Google Scholar]
  6. De AlbuquerqueL.P. Siqueira PatriotaL.L. GonzattoV. PontualE.V. Guedes PaivaP.M. NapoleãoT.H. Coronavirus spike (S) protein: A brief review on structure-function relationship, host receptors, and role in cell infection.Adv. Res.202021911612410.9734/air/2020/v21i930240
    [Google Scholar]
  7. ZhangQ. XiangR. HuoS. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy.Signal Transduct. Target. Ther.20216123310.1038/s41392‑021‑00653‑w 34117216
    [Google Scholar]
  8. NejatR. TorshiziM.F. NajafiD.J. S protein, ACE2 and host cell proteases in SARS-CoV-2 cell entry and infectivity; is soluble ACE2 a two blade sword? A narrative review.Vaccines (Basel)202311220410.3390/vaccines11020204 36851081
    [Google Scholar]
  9. DavidsonA.M. WysockiJ. BatlleD. Interaction of SARS-CoV-2 and other coronavirus with ACE (angiotensin-converting enzyme)-2 as their main receptor: Therapeutic implications.Hypertension20207651339134910.1161/HYPERTENSIONAHA.120.15256 32851855
    [Google Scholar]
  10. SantosR.A. SampaioW.O. AlzamoraA.C. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1–7).Physiol. Rev.2017981505553 29351514
    [Google Scholar]
  11. AkhigbeR.E. DuttaS. HamedM.A. AjayiA.F. SenguptaP. AhmadG. Viral infections and male infertility: A comprehensive review of the role of oxidative stress.Front. Reprod. Health2022478291510.3389/frph.2022.782915 36303638
    [Google Scholar]
  12. LiX. LuH. LiF. Impacts of COVID-19 and SARS-CoV-2 on male reproductive function: A systematic review and meta-analysis protocol.BMJ Open2022121e05305110.1136/bmjopen‑2021‑053051 34987042
    [Google Scholar]
  13. PatelD.P. PunjaniN. GuoJ. AlukalJ.P. LiP.S. HotalingJ.M. The impact of SARS-CoV-2 and COVID-19 on male reproduction and men’s health.Fertil. Steril.2021115481382310.1016/j.fertnstert.2020.12.033 33509629
    [Google Scholar]
  14. MetcalfC.J.E. PaireauJ. O’DriscollM. Comparing the age and sex trajectories of SARS-CoV-2 morbidity and mortality with other respiratory pathogens.R. Soc. Open Sci.20229621149810.1098/rsos.211498 35719888
    [Google Scholar]
  15. ChakravartyD. NairS.S. HammoudaN. Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer.Commun. Biol.20203137410.1038/s42003‑020‑1088‑9 32641750
    [Google Scholar]
  16. GemmatiD. BramantiB. SerinoM.L. SecchieroP. ZauliG. TisatoV. SARS-CoV-2 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2compared to the single X-chromosome in males?Int. J. Mol. Sci.20202110347410.3390/ijms21103474 32423094
    [Google Scholar]
  17. ForsythK.S. AngueraM.C. Time to get ill: The intersection of viral infections, sex, and the X chromosome.Curr. Opin. Physiol.202119627210.1016/j.cophys.2020.09.015 33073073
    [Google Scholar]
  18. MontopoliM. ZumerleS. RuggeM. AlimontiA. Genetic and hormonal influence on SARS-CoV-2-infection susceptibility.Ann. Oncol.202031111584158510.1016/j.annonc.2020.07.022 33239191
    [Google Scholar]
  19. SrivastavaS. KumarS. AshiqueS. Fast-spreading JN.1: What you need to know about the latest COVID-19 subvariant.J. Infect. Public Health202417710245110.1016/j.jiph.2024.05.039 38838605
    [Google Scholar]
  20. ChananaN. PalmoT. SharmaK. KumarR. GrahamB.B. PashaQ. Sex-derived attributes contributing to SARS-CoV-2 mortality.Am. J. Physiol. Endocrinol. Metab.20203193E562E56710.1152/ajpendo.00295.2020 32726128
    [Google Scholar]
  21. BohlinJ. PageC.M. LeeY. Age and sex effects on DNA methylation sites linked to genes implicated in severe COVID-19 and SARS-CoV-2 host cell entry.PLoS One2022176e026910510.1371/journal.pone.0269105 35679253
    [Google Scholar]
  22. WeiJ. AlfajaroM.M. DeWeirdtP.C. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection.Cell202118417691.e1310.1016/j.cell.2020.10.028 33147444
    [Google Scholar]
  23. HouJ. WeiY. ZouJ. Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection.Nat. Commun.202415110910.1038/s41467‑023‑44175‑1 38168026
    [Google Scholar]
  24. Cantuti-CastelvetriL. OjhaR. PedroL.D. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.Science2020370651885686010.1126/science.abd2985 33082293
    [Google Scholar]
  25. AngelidesP.K. JindalI. KaravitiL. GeffnerM.E. It’s X-related: Biological bases of increased SARS-CoV-2 morbidity and mortality in men.J. Endocr. Soc.2020411bvaa13310.1210/jendso/bvaa133 33117953
    [Google Scholar]
  26. OladejoB.O. AdeboboyeC.F. AdeboluT.T. Understanding the genetic determinant of severity in viral diseases: A case of SARS-CoV-2 infection.Egypt. J. Med. Hum. Genet.20202117710.1186/s43042‑020‑00122‑z 38624552
    [Google Scholar]
  27. KouidouS MalousiA AndreouAZ Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: Triggering a lethal fight to keep control of the ten-eleven translocase (TET)-associated DNA demethylation? pathogens2020912100610.3390/pathogens9121006 33266135
    [Google Scholar]
  28. Kirsch-VoldersM. FenechM. Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis.Mutat. Res. Rev. Mutat. Res.202178810839510.1016/j.mrrev.2021.108395 34893160
    [Google Scholar]
  29. BienvenuL.A. NoonanJ. WangX. PeterK. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities.Cardiovasc. Res.2020116142197220610.1093/cvr/cvaa284 33063089
    [Google Scholar]
  30. ZhangW. WuH. GuoQ. Association of clinical characteristics and vaccines with risk of persistently viral clearance in patients infected with SARS-CoV-2 Omicron variant in Shanghai, China.Heliyon2024101
    [Google Scholar]
  31. MohantyA. SawhneyA. GuptaS. Sex differences in SARS-CoV-2 infections, anti-viral immunity and vaccine responses.Asian Pac. J. Trop. Med.20221539710510.4103/1995‑7645.340567
    [Google Scholar]
  32. MacGowanS.A. BartonG.J. Missense variants in ACE2 are predicted to encourage and inhibit interaction with SARS-CoV-2Spike and contribute to genetic risk in SARS-CoV-2.BioRxiv2020
    [Google Scholar]
  33. Engku Abd RahmanE.N.S. Al-FendiA.M.R.M. IrekeolaA.A. MusaN. FurusawaG. ChanY.Y. SARS-CoV-2 viral shedding and susceptibility: Perspectives on gender and asymptomatic patients.J. Infect. Dev. Ctries.202216576877710.3855/jidc.14721 35656946
    [Google Scholar]
  34. ArefiniaN YaghoubiR RamezaniA FarokhniaM ZadehA SarvariJ. J. Association of IFITM1 promoter methylation with severity of SARS-CoV-2 infection. Clin Lab20236904/202310.7754/Clin.Lab.2022.220622 37057950
    [Google Scholar]
  35. Al-BariM.A.A. HossainS. ZahanM.K.E. Exploration of sex-specific and age-dependent COVID-19 fatality rate in Bangladesh population.World J. Radiol.202113111810.4329/wjr.v13.i1.1 33574990
    [Google Scholar]
  36. FaiyazuddinM. SophiaA. AshiqueS. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: A comprehensive review.Front. Immunol.202314126450210.3389/fimmu.2023.1264502 37818370
    [Google Scholar]
  37. RazaH.A. SenP. BhattiO.A. GuptaL. Sex hormones, autoimmunity and gender disparity in COVID-19.Rheumatol. Int.20214181375138610.1007/s00296‑021‑04873‑9 33903964
    [Google Scholar]
  38. ZhangL. SarangiV. LiuD. ACE2 and TMPRSS2 SARS-CoV-2 infectivity genes: Deep mutational scanning and characterization of missense variants.Hum. Mol. Genet.202231244183419210.1093/hmg/ddac157 35861636
    [Google Scholar]
  39. ChlamydasS. PapavassiliouA.G. PiperiC. Epigenetic mechanisms regulating COVID-19 infection.Epigenetics202116326327010.1080/15592294.2020.1796896 32686577
    [Google Scholar]
  40. Mauvais-JarvisF. KleinS.L. LevinE.R. Estradiol, progesterone, immunomodulation, and SARS-CoV-2 outcomes.Endocrinology20201619bqaa12710.1210/endocr/bqaa127 32730568
    [Google Scholar]
  41. AmadiC. LawsonS. The impact of systemic inflammation on sex-based bias following SARS-CoV-2 infection.European J Clin Biomed Sci2022811810.11648/j.ejcbs.20220801.11
    [Google Scholar]
  42. SherwaniS. KhanM.W.A. Cytokine response in SARS-CoV-2 infection in the elderly.J. Inflamm. Res.20201373774710.2147/JIR.S276091 33116752
    [Google Scholar]
  43. SongP. LiW. XieJ. HouY. YouC. Cytokine storm induced by SARS-CoV-2.Clin. Chim. Acta202050928028710.1016/j.cca.2020.06.017 32531256
    [Google Scholar]
  44. NorooziR. BranickiW. PyrcK. Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions.Cytokine202013315514310.1016/j.cyto.2020.155143 32460144
    [Google Scholar]
  45. AzkurA.K. AkdisM. AzkurD. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19.Allergy20207571564158110.1111/all.14364 32396996
    [Google Scholar]
  46. CopaescuA. SmibertO. GibsonA. PhillipsE.J. TrubianoJ.A. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection.J. Allergy Clin. Immunol.20201463518534.e110.1016/j.jaci.2020.07.001 32896310
    [Google Scholar]
  47. ThielV. WeberF. Interferon and cytokine responses to SARS-coronavirus infection.Cytokine Growth Factor Rev.200819212113210.1016/j.cytogfr.2008.01.001 18321765
    [Google Scholar]
  48. PetroneL. PetruccioliE. VaniniV. A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients.Clin. Microbiol. Infect.2021272286.e7286.e1310.1016/j.cmi.2020.09.051 33045370
    [Google Scholar]
  49. Portela SousaC. BritesC. Immune response in SARS-CoV-2 infection: The role of interferons type I and type III.Braz. J. Infect. Dis.202024542843310.1016/j.bjid.2020.07.011 32866437
    [Google Scholar]
  50. İnandıklıoğluN. AkkocT. Immune responses to SARS-CoV, MERS-CoV and SARS-CoV-2.Adv. Exp. Med. Biol.202063512
    [Google Scholar]
  51. LoweryS.A. SariolA. PerlmanS. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19.Cell Host Microbe20212971052106210.1016/j.chom.2021.05.004 34022154
    [Google Scholar]
  52. YuC. LittletonS. GirouxN.S. Mucosal-associated invariant T cell responses differ by sex in COVID-19.Med202126755772.e510.1016/j.medj.2021.04.008 33870241
    [Google Scholar]
  53. KeetonR. TinchoM.B. NgomtiA. T cell responses to SARS-CoV-2 spike cross-recognize Omicron.Nature2022603790148849210.1038/s41586‑022‑04460‑3 35102311
    [Google Scholar]
  54. AshiqueS. MishraN. MohantoS. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects.Heliyon2024104e2575410.1016/j.heliyon.2024.e25754 38370192
    [Google Scholar]
  55. ShrotriM. van SchalkwykM.C.I. PostN. T cell response to SARS-CoV-2 infection in humans: A systematic review.PLoS One2021161e024553210.1371/journal.pone.0245532 33493185
    [Google Scholar]
  56. GrifoniA. SidneyJ. VitaR. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19.Cell Host Microbe20212971076109210.1016/j.chom.2021.05.010 34237248
    [Google Scholar]
  57. ShahS.B. COVID-19 and Progesterone: Part 1. SARS-CoV-2, Progesterone and its potential clinical use.Endocr. Metab. Sci.20215100109
    [Google Scholar]
  58. LemesR.M.R. CostaA.J. BartolomeoC.S. 17β‐estradiol reduces SARS‐CoV‐2 infection in vitro.Physiol. Rep.202192e1470710.14814/phy2.14707 33463909
    [Google Scholar]
  59. AbramenkoN. VellieuxF. TesařováP. Estrogen receptor modulators in viral infections such as SARS− CoV− 2: Therapeutic consequences.Int. J. Mol. Sci.20212212655110.3390/ijms22126551 34207220
    [Google Scholar]
  60. SolisO. BeccariA.R. IaconisD. The SARS-CoV-2 spike protein binds and modulates estrogen receptors.Sci. Adv.2022848eadd415010.1126/sciadv.add4150 36449624
    [Google Scholar]
  61. YounJ.Y. ZhangY. WuY. CannessonM. CaiH. Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells.Redox Biol.20214610209910.1016/j.redox.2021.102099 34509916
    [Google Scholar]
  62. MansouriA. KowsarR. ZakariazadehM. HakimiH. MiyamotoA. The impact of calcitriol and estradiol on the SARS-CoV-2 biological activity: A molecular modeling approach.Sci. Rep.202212171710.1038/s41598‑022‑04778‑y 35027633
    [Google Scholar]
  63. KhanN. Possible protective role of 17β-estradiol against COVID-19.J. Allergy Infect. Dis.2020123848
    [Google Scholar]
  64. ContiP. YounesA. Coronavirus COV-19/SARS-CoV-2 affects women less than men: Clinical response to viral infection.J. Biol. Regul. Homeost. Agents2020342339343 32253888
    [Google Scholar]
  65. StilhanoR.S. CostaA.J. NishinoM.S. SARS‐CoV‐2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors.FASEB J.20203411141031411910.1096/fj.202001394RR 32965736
    [Google Scholar]
  66. WangH. SunX.L. VonCannonJ. KonN.D. FerrarioC.M. GrobanL. Estrogen receptors are linked to angiotensin-converting enzyme 2 (ACE2), ADAM metallopeptidase domain 17 (ADAM-17), and transmembrane protease serine 2 (TMPRSS2) expression in the human atrium: Insights into COVID-19.Hypertens. Res.202144788288410.1038/s41440‑021‑00626‑0 33536584
    [Google Scholar]
  67. BaristaiteG. GurwitzD. Estradiol reduces ACE2 andTMPRSS2 mRNA levels in A549 human lung epithelial cells.Drug Dev. Res.202283496196610.1002/ddr.21923 35103351
    [Google Scholar]
  68. SethS. MishraN. SharmaR. COVID-19 and menstrual status: Is menopause an independent risk factor for SARS CoV-2?J Midlife Health202011424024910.4103/jmh.JMH_288_20 33767566
    [Google Scholar]
  69. PirhadiR. Sinai TalaulikarV. OnwudeJ. ManyondaI. Could estrogen protect women from SARS-CoV-2?J. Clin. Med. Res.2020121063463910.14740/jocmr4303 33029269
    [Google Scholar]
  70. MiaoG. PengH. TangH. Antiviral efficacy of selective estrogen receptor modulators against SARS‐CoV‐2 infection in vitro and in vivo reveals bazedoxifene acetate as an entry inhibitor.J. Med. Virol.202294104809481910.1002/jmv.27951 35733297
    [Google Scholar]
  71. ChedrauiP. Pérez-LópezF.R. The severe acute respiratory syndrome due to coronavirus 2 (SARS-CoV-2) infection and the climacteric woman.Climacteric202023652552710.1080/13697137.2020.1837547 33252294
    [Google Scholar]
  72. Ramírez-de-ArellanoA. Gutiérrez-FrancoJ. Sierra-DiazE. Pereira-SuárezA.L. The role of estradiol in the immune response against COVID-19.Hormones (Athens)202120465766710.1007/s42000‑021‑00300‑7 34142358
    [Google Scholar]
  73. AshiqueS MishraN GargA A Critical Review on the Long- Term COVID-19 Impacts on Patients With Diabetes. Am J Med2024S0002-9343(24): 00133-5.10.1016/j.amjmed.2024.02.029 38485111
    [Google Scholar]
  74. CostaA.J. LemesR.M.R. BartolomeoC.S. Overexpression of estrogen receptor GPER1 and G1 treatment reduces SARS-CoV-2 infection in BEAS-2B bronchial cells.Mol. Cell. Endocrinol.202255811177510.1016/j.mce.2022.111775 36096380
    [Google Scholar]
  75. Di VincenzoA. AndrisaniA. VettorR. RossatoM. Estrogen and COVID-19: Friend or foe?Ann. Oncol.202132793393410.1016/j.annonc.2021.03.201 33794291
    [Google Scholar]
  76. QiaoY. WangX.M. MannanR. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2.Proc. Natl. Acad. Sci. USA20211181e202145011810.1073/pnas.2021450118 33310900
    [Google Scholar]
  77. CamiciM. ZuppiP. LorenziniP. Role of testosterone in SARS-CoV-2 infection: A key pathogenic factor and a biomarker for severe pneumonia.Int. J. Infect. Dis.202110824425110.1016/j.ijid.2021.05.042 34023492
    [Google Scholar]
  78. ÇayanS. UğuzM. SaylamB. AkbayE. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: A cohort study.Aging Male20202351493150310.1080/13685538.2020.1807930 32883151
    [Google Scholar]
  79. Di StasiV. RastrelliG. IngleseF. Higher testosterone is associated with increased inflammatory markers in women with SARS-CoV-2 pneumonia: Preliminary results from an observational study.J. Endocrinol. Invest.202245363964810.1007/s40618‑021‑01682‑6 34731444
    [Google Scholar]
  80. Lucio CarrascoC.H. NodaP. BarbosaA.P. SARS-CoV-2nucleocapsid protein is associated with lower testosterone levels: An experimental study.Front. Physiol.20221386744410.3389/fphys.2022.867444 35721551
    [Google Scholar]
  81. OryJ. LimaT.F.N. ToweM. Understanding the complex relationship between androgens and SARS-CoV-2.Urology20201441310.1016/j.urology.2020.06.048 32653566
    [Google Scholar]
  82. SalcicciaS. Del GiudiceF. EisenbergM.L. Androgen-deprivation therapy and SARS-CoV-2 infection: The potential double-face role of testosterone.Ther. Adv. Endocrinol. Metab.20201110.1177/2042018820969019 33194171
    [Google Scholar]
  83. RagiaG. ManolopoulosV.G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies.Eur. J. Clin. Pharmacol.202076121623163010.1007/s00228‑020‑02963‑4 32696234
    [Google Scholar]
  84. HuX. ShrimpJ.H. GuoH. Discovery of TMPRSS2 inhibitors from virtual screening as a potential treatment of COVID-19.ACS Pharmacol. Transl. Sci.2021431124113510.1021/acsptsci.0c00221 34136758
    [Google Scholar]
  85. BabyK. MaityS. MehtaC.H. SureshA. NayakU.Y. NayakY. SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study.Eur. J. Pharmacol.202189617392210.1016/j.ejphar.2021.173922 33539819
    [Google Scholar]
  86. MarinelliL. BeccutiG. ZavattaroM. Testosterone as a biomarker of adverse clinical outcomes in SARS-CoV-2 pneumonia.Biomedicines202210482010.3390/biomedicines10040820 35453570
    [Google Scholar]
  87. AshiqueS. SandhuN.K. “Ayurvedic system”: A new possible safe and effective way to get rid of this critical COVID-19 pandemic situation- A review.Curr. Tradit. Med.202281e13042119281810.2174/2215083807666210413113113
    [Google Scholar]
  88. SaloniaA. PontilloM. CapogrossoP. Testosterone in males with COVID‐19: A 7‐month cohort study.Andrology2022101344110.1111/andr.13097 34409772
    [Google Scholar]
  89. SaloniaA. PontilloM. CapogrossoP. Testosterone in males with COVID‐19: A 12‐month cohort study.Andrology2023111172310.1111/andr.13322 36251583
    [Google Scholar]
  90. KadihasanogluM. AktasS. YardimciE. AralH. KadiogluA. SARS-CoV-2 pneumonia affects male reproductive hormone levels: A prospective, cohort study.J. Sex. Med.202118225626410.1016/j.jsxm.2020.11.007 33468445
    [Google Scholar]
  91. PegiouS. RentzeperiE. KoufakisT. MetallidisS. KotsaK. The role of sexual dimorphism in susceptibility to SARS-CoV-2 infection, disease severity, and mortality: Facts, controversies and future perspectives.Microbes Infect.2021239-1010485010.1016/j.micinf.2021.104850 34129909
    [Google Scholar]
  92. YassinA. ShabsighR. Al-ZoubiR.M. Testosterone and COVID‐19: An update.Rev. Med. Virol.2023331e239510.1002/rmv.2395 36056748
    [Google Scholar]
  93. KalraS. BhattacharyaS. KalhanA. Testosterone in SARS-CoV-2–foe, friend or fatal victim?Eur. Endocrinol.20201628891 33117437
    [Google Scholar]
  94. RanjanJ. RavindraA. MishraB. Gender and genetic factors impacting COVID-19 severity.J. Family Med. Prim. Care202110113956396310.4103/jfmpc.jfmpc_769_21 35136752
    [Google Scholar]
  95. SierraI. PyfromS. WeinerA. Unusual X chromosome inactivation maintenance in female alveolar type 2 cells is correlated with increased numbers of X-linked escape genes and sex-biased gene expression.Stem Cell Reports202318248950210.1016/j.stemcr.2022.12.005 36638790
    [Google Scholar]
  96. PirolaC.J. SookoianS. SARS-COV-2 and ACE2 in the liver and gastrointestinal tract: Putative biological explanations of sexual dimorphism.Gastroenterology202015941620162110.1053/j.gastro.2020.04.050 32348773
    [Google Scholar]
  97. SprouleT.J. JazwinskaE.C. BrittonR.S. Naturally variant autosomal and sex-linked loci determine the severity of iron overload in β 2 -microglobulin-deficient mice.Proc. Natl. Acad. Sci. USA20019895170517410.1073/pnas.091088998 11309500
    [Google Scholar]
  98. HaleV.L. DennisP.M. McBrideD.S. SARS-CoV-2 infection in free-ranging white-tailed deer.Nature2022602789748148610.1038/s41586‑021‑04353‑x 34942632
    [Google Scholar]
  99. TrotteinF. SokolH. Potential causes and consequences of gastrointestinal disorders during a SARS-CoV-2 infection.Cell Rep.202032310791510.1016/j.celrep.2020.107915 32649864
    [Google Scholar]
  100. PaganoM.T. PeruzzuD. BusaniL. Predicting respiratory failure in patients infected by SARS-CoV-2 by admission sex-specific biomarkers.Biol. Sex Differ.20211216310.1186/s13293‑021‑00407‑x 34809704
    [Google Scholar]
  101. TsuiC.Y. TreagustD.F. Genetics reasoning with multiple external representations.Res. Sci. Educ.200333111113510.1023/A:1023685706290
    [Google Scholar]
  102. ZhengS. WangX. ZhangS. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Southern catfish (Silurus meridionalis).Aquaculture202051773478310.1016/j.aquaculture.2019.734783
    [Google Scholar]
  103. ChukwumaIF ApehVO EmaimoJ Cross talk on SARS-CoV- 2and human immunity. Nigerian J Pharmaceut Res202116S519
    [Google Scholar]
  104. LüM. QiuL. JiaG. GuoR. LengQ. Single-cell expression profiles of ACE2 and TMPRSS2 reveals potential vertical transmission and fetus infection of SARS-CoV-2.Aging (Albany NY)20201220198801989710.18632/aging.104015 33104520
    [Google Scholar]
  105. PirolaC.J. SookoianS. COVID ‐19 and non‐alcoholic fatty liver disease: Biological insights from multi‐omics data.Liver Int.202343358058710.1111/liv.15509 36593576
    [Google Scholar]
  106. SheH. LiuZ. LiS. Evolution of the spinach sex-linked region within a rarely recombining pericentromeric region.Plant Physiol.202319321263128010.1093/plphys/kiad389 37403642
    [Google Scholar]
  107. MaasA.H.E.M. Oertelt-PrigioneS. The coronavirus disease 2019 outbreak highlights the importance of sex-sensitive medicine.Eur. Cardiol.202015Febe6210.15420/ecr.2020.28 32944091
    [Google Scholar]
  108. AnastassopoulouC. GkizariotiZ. PatrinosG.P. TsakrisA. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity.Hum. Genomics20201414010.1186/s40246‑020‑00290‑4 33092637
    [Google Scholar]
  109. LitteraR. CampagnaM. DeiddaS. Human leukocyte antigen complex and other immunogenetic and clinical factors influence susceptibility or protection to SARS-CoV-2 infection and severity of the disease course. The Sardinian experience.Front. Immunol.20201160568810.3389/fimmu.2020.605688 33343579
    [Google Scholar]
  110. MocciS. LitteraR. ChessaL. A review of the main genetic factors influencing the course of COVID-19 in Sardinia: The role of human leukocyte antigen-G.Front. Immunol.202314113855910.3389/fimmu.2023.1138559 37342325
    [Google Scholar]
  111. NguyenA. DavidJ.K. MadenS.K. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2.J. Virol.20209413e00510e0052010.1128/JVI.00510‑20 32303592
    [Google Scholar]
  112. KeichoN. ItoyamaS. KashiwaseK. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population.Hum. Immunol.200970752753110.1016/j.humimm.2009.05.006 19445991
    [Google Scholar]
  113. HajeerA. BalkhyH. JohaniS. YousefM. ArabiY. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection.Ann. Thorac. Med.201611321121310.4103/1817‑1737.185756 27512511
    [Google Scholar]
  114. MedhasiS. ChantratitaN. Human leukocyte antigen (HLA) system: Genetics and association with bacterial and viral infections.J. Immunol. Res.2022202211510.1155/2022/9710376 35664353
    [Google Scholar]
  115. AugustoD.G. HollenbachJ.A. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection.Curr. Opin. Immunol.20227610217810.1016/j.coi.2022.102178 35462277
    [Google Scholar]
  116. RaslanMA AlshahaweyM ShehataEM SabriNA Does human leukocyte antigen gene polymorphism affect management of SARS-COV-2 patients. A review article. Scientific J Genet Gene Ther2020610013
    [Google Scholar]
  117. Al-BayateeN.T. Ad’hiahA.H. Soluble HLA-G is upregulated in serum of patients with severe COVID-19.Hum. Immunol.2021821072673210.1016/j.humimm.2021.07.007 34304938
    [Google Scholar]
  118. RottmayerK. Loeffler-WirthH. GruenewaldT. DoxiadisI. LehmannC. Individual immune response to SARS-CoV-2 infection—the role of seasonal coronaviruses and human leukocyte antigen.Biology (Basel)20231210129310.3390/biology12101293 37887003
    [Google Scholar]
  119. CharonisS.A. JamesL.M. GeorgopoulosA.P. SARS-CoV-2 in silico binding affinity to human leukocyte antigen (HLA) Class II molecules predicts vaccine effectiveness across variants of concern (VOC).Sci. Rep.2022121807410.1038/s41598‑022‑11956‑5 35577837
    [Google Scholar]
  120. EspositoM. MinnaiF. CopettiM. Human leukocyte antigen variants associate with BNT162b2 mRNA vaccine response.Commun. Med.2024416310.1038/s43856‑024‑00490‑2 38575714
    [Google Scholar]
  121. SARS-CoV-2 Host Genetics Initiative aganna@ broadinstitute. org. SARS-CoV-2 Host Genetics Initiative aganna@ broadinstitute. org. The SARS-CoV-2 host genetics initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2virus pandemic.Eur. J. Hum. Genet.202028671571810.1038/s41431‑020‑0636‑6 32404885
    [Google Scholar]
  122. TroshinaE. YukinaM. NuralievaN. Association of alleles of human leukocyte antigen class II genes and severity of COVID-19 in patients of the ‘red zone’ of the endocrinology research center, Moscow, Russia.Diseases20221049910.3390/diseases10040099 36412593
    [Google Scholar]
  123. ToyoshimaY. NemotoK. MatsumotoS. NakamuraY. KiyotaniK. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19.J. Hum. Genet.202065121075108210.1038/s10038‑020‑0808‑9 32699345
    [Google Scholar]
  124. JiangC. ChenQ. XieM. Smoking increases the risk of infectious diseases: A narrative review.Tob. Induc. Dis.202018July6010.18332/tid/123845 32765200
    [Google Scholar]
  125. SimonsD. ShahabL. BrownJ. PerskiO. The association of smoking status with SARS‐CoV‐2 infection, hospitalization and mortality from COVID‐19: A living rapid evidence review with Bayesian meta‐analyses (version 7).Addiction202111661319136810.1111/add.15276 33007104
    [Google Scholar]
  126. LeeS.C. SonK.J. KimD.W. Smoking and the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.Nicotine Tob. Res.202123101787179210.1093/ntr/ntab079 33891697
    [Google Scholar]
  127. GrundyE. SuddekT. FilippidisF. MajeedA. Coronini-CronbergS. Smoking, SARS-CoV-2 and COVID-19: A review of reviews considering implications for public health policy and practice.Tob. Induc. Dis.202018July5810.18332/tid/124788 32641924
    [Google Scholar]
  128. EnginA.B. EnginE.D. EnginA. Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking.Environ. Toxicol. Pharmacol.20207810341110.1016/j.etap.2020.103411 32422280
    [Google Scholar]
  129. Young-WolffK.C. SlamaN. AlexeeffS.E. Tobacco smoking and risk of SARS-CoV-2 infection and disease severity among adults in an integrated healthcare system in California.Nicotine Tob. Res.202325221122010.1093/ntr/ntac090 35368066
    [Google Scholar]
  130. BrakeS.J. BarnsleyK. LuW. McAlindenK.D. EapenM.S. SohalS.S. Smoking upregulates angiotensin-converting enzyme-2 receptor: A potential adhesion site for novel coronavirus SARS-CoV-2(SARS-CoV-2).J. Clin. Med.20209384110.3390/jcm9030841 32244852
    [Google Scholar]
  131. GuptaI. SohailM.U. ElzawawiK.E. SARS-CoV-2 infection and smoking: What is the association? A brief review.Comput. Struct. Biotechnol. J.2021191654166010.1016/j.csbj.2021.03.023 33777332
    [Google Scholar]
  132. DuszynskiT.J. FadelW. Wools-KaloustianK.K. Association of health status and nicotine consumption with SARS-CoV-2 positivity rates.BMC Public Health2021211178610.1186/s12889‑021‑11867‑6 34600513
    [Google Scholar]
  133. PoudelR. DanielsL.B. DeFilippisA.P. Smoking is associated with increased risk of cardiovascular events, disease severity, and mortality among patients hospitalized for SARS-CoV-2 infections.PLoS One2022177e027076310.1371/journal.pone.0270763 35839264
    [Google Scholar]
  134. Vallarta-RobledoJ.R. SandovalJ.L. BaggioS. Negative association between smoking and positive SARS-CoV-2 testing: Results from a Swiss outpatient sample population.Front. Public Health2021973198110.3389/fpubh.2021.731981 34805064
    [Google Scholar]
  135. RossatoM. RussoL. MazzocutS. Di VincenzoA. FiorettoP. VettorR. Current smoking is not associated with COVID-19.Eur. Respir. J.2020556200129010.1183/13993003.01290‑2020 32350106
    [Google Scholar]
  136. LandoniG. ZangrilloA. Romero GarcíaC.S. Nations with high smoking rate have low SARS-CoV-2 infection and low COVID-19 mortality rate.Acta Biomed.2020914e2020168 33525216
    [Google Scholar]
  137. ChakladarJ. ShendeN. LiW.T. RajasekaranM. ChangE.Y. OngkekoW.M. Smoking-mediated upregulation of the androgen pathway leads to increased SARS-CoV-2 susceptibility.Int. J. Mol. Sci.20202110362710.3390/ijms21103627 32455539
    [Google Scholar]
  138. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. COVID-19: Consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑0 32192578
    [Google Scholar]
  139. PolosaR. TomaselliV. FerraraP. Seroepidemiological survey on the impact of smoking on SARS-CoV-2 infection and SARS-CoV-2 outcomes: Protocol for the Troina study.JMIR Res. Protoc.20211011e3228510.2196/32285 34678752
    [Google Scholar]
  140. BerlinI. ThomasD. Le FaouA.L. CornuzJ. COVID-19 and Smoking.Nicotine Tob. Res.20202291650165210.1093/ntr/ntaa059 32242236
    [Google Scholar]
  141. JordanR.E. AdabP. Who is most likely to be infected with SARS-CoV-2?Lancet Infect. Dis.202020999599610.1016/S1473‑3099(20)30395‑9 32422197
    [Google Scholar]
  142. PerskiO. HerbećA. ShahabL. BrownJ. Influence of the SARS-CoV-2 outbreak on the uptake of a popular smoking cessation app in UK smokers: Interrupted time series analysis.JMIR Mhealth Uhealth202086e1949410.2196/19494 32463375
    [Google Scholar]
  143. IsraelA. FeldhamerE. LahadA. Levin-ZamirD. LavieG. Smoking and the risk of SARS-CoV-2 in a large observational population study.MedRxiv2020
    [Google Scholar]
  144. LiJ MartinezMC FroschDL MattGE Effects of smoking on SARS-CoV-2 positivity: A study of a large health system in northern and central california. Tob Use Insights2022151179173X221114799
    [Google Scholar]
  145. PaleironN. MayetA. MarbacV. Impact of tobacco smoking on the risk of SARS-CoV-2: A large scale retrospective cohort study.Nicotine Tob. Res.20212381398140410.1093/ntr/ntab004 33420786
    [Google Scholar]
  146. HoballahA. El HaidariR. BadranR. JaberA. MansourS. Abou-AbbasL. Smoking status and SARS-CoV-2 infection severity among Lebanese adults: A cross-sectional study.BMC Infect. Dis.202222174610.1186/s12879‑022‑07728‑1 36153476
    [Google Scholar]
  147. ShastriM.D. ShuklaS.D. ChongW.C. Smoking and COVID-19: What we know so far.Respir. Med.202117610623710.1016/j.rmed.2020.106237 33246296
    [Google Scholar]
  148. RaderB. AstleyC.M. SyK.T.L. Geographic access to United States SARS-CoV-2 testing sites highlights healthcare disparities and may bias transmission estimates.J. Travel Med.2020277taaa07610.1093/jtm/taaa076 32412064
    [Google Scholar]
  149. VahidyF.S. NicolasJ.C. MeeksJ.R. Racial and ethnic disparities in SARS-CoV-2 pandemic: Analysis of a COVID-19 observational registry for a diverse US metropolitan population.BMJ Open2020108e03984910.1136/bmjopen‑2020‑039849 32784264
    [Google Scholar]
  150. GoldshteinI. NevoD. SteinbergD.M. Association between BNT162b2 vaccination and incidence of SARS-CoV-2infection in pregnant women.JAMA2021326872873510.1001/jama.2021.11035 34251417
    [Google Scholar]
  151. SiffE.J. AghagoliG. Gallo MarinB. Tobin-TylerE. PoitevienP. SARS-CoV-2 transmission: A sociological review.Epidemiol. Infect.2020148e24210.1017/S095026882000240X 33023703
    [Google Scholar]
  152. LewnardJ.A. PatelM.M. JewellN.P. Theoretical framework for retrospective studies of the effectiveness of SARS-CoV-2 vaccines.Epidemiology202132450851710.1097/EDE.0000000000001366 34001753
    [Google Scholar]
  153. FerioliM. CisterninoC. LeoV. PisaniL. PalangeP. NavaS. Protecting healthcare workers from SARS-CoV-2 infection: Practical indications.Eur. Respir. Rev.20202915520006810.1183/16000617.0068‑2020 32248146
    [Google Scholar]
  154. RichtermanA. MeyerowitzE.A. CevikM. Hospital-acquired SARS-CoV-2 infection: Lessons for public health.JAMA2020324212155215610.1001/jama.2020.21399 33185657
    [Google Scholar]
  155. HeintzmanJ. O’MalleyJ. MarinoM. SARS-CoV-2testing and changes in primary care services in a multistate network of community health centers during the SARS-CoV-2 pandemic.JAMA2020324141459146210.1001/jama.2020.15891 32870237
    [Google Scholar]
  156. Di BidinoR. CicchettiA. Impact of SARS-CoV-2on provided healthcare. Evidence from the emergency phase in Italy.Front. Public Health2020858358310.3389/fpubh.2020.583583 33330324
    [Google Scholar]
  157. LanaR.M. CoelhoF.C. GomesM.F.D.C. The novel coronavirus (SARS-CoV-2) emergency and the role of timely and effective national health surveillance.Cad. Saude Publica2020363e0001962010.1590/0102‑311x00019620 32187288
    [Google Scholar]
  158. MagnavitaN. ChiricoF. GarbarinoS. BragazziN.L. SantacroceE. ZaffinaS. SARS/MERS/SARS-CoV-2 outbreaks and burnout syndrome among healthcare workers. An umbrella systematic review.Int. J. Environ. Res. Public Health2021188436110.3390/ijerph18084361 33924026
    [Google Scholar]
  159. SegalaF.V. BavaroD.F. Di GennaroF. Impact of SARS-CoV-2 epidemic on antimicrobial resistance: A literature review.Viruses20211311211010.3390/v13112110 34834917
    [Google Scholar]
  160. AveryanovaM. VishnyakovaP. YurenevaS. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic.Front. Immunol.20221392817110.3389/fimmu.2022.928171 35983046
    [Google Scholar]
  161. NiedzwiedzC.L. O’DonnellC.A. JaniB.D. Ethnic and socioeconomic differences in SARS-CoV-2 infection: Prospective cohort study using UK Biobank.BMC Med.202018116010.1186/s12916‑020‑01640‑8 32466757
    [Google Scholar]
  162. BoothA. ReedA.B. PonzoS. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis.PLoS One2021163e024746110.1371/journal.pone.0247461 33661992
    [Google Scholar]
  163. AdorniF. PrinelliF. BianchiF. Self-reported symptoms of SARS-CoV-2 infection in a nonhospitalized population in Italy: Cross-sectional study of the EPICOVID19 web-based survey.JMIR Public Health Surveill.202063e2186610.2196/21866 32650305
    [Google Scholar]
  164. SunK. WangW. GaoL. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2.Science20213716526eabe242410.1126/science.abe2424 33234698
    [Google Scholar]
  165. PivonelloR. AuriemmaR.S. PivonelloC. Sex disparities in SARS-CoV-2 severity and outcome: Are men weaker or women stronger?Neuroendocrinology2021111111066108510.1159/000513346 33242856
    [Google Scholar]
  166. PaoliD. PallottiF. AnzuiniA. Male reproductive health after 3 months from SARS-CoV-2 infection: A multicentric study.J. Endocrinol. Invest.20224618910110.1007/s40618‑022‑01887‑3 35943723
    [Google Scholar]
  167. TianY. ZhouL. Evaluating the impact of COVID-19 on male reproduction.Reproduction20211612R37R4410.1530/REP‑20‑0523 33434886
    [Google Scholar]
  168. Sheikhzadeh HesariF. HosseinzadehS.S. Asl Monadi SardroudM.A. Review of COVID‐19 and male genital tract.Andrologia2021531e1391410.1111/and.13914 33236375
    [Google Scholar]
  169. HeW. LiuX. FengL. Impact of SARS-CoV-2 on male reproductive health: A review of the literature on male reproductive involvement in COVID-19.Front. Med. (Lausanne)2020759436410.3389/fmed.2020.594364 33330557
    [Google Scholar]
  170. AgolliA. YukselenZ. AgolliO. SARS-CoV-2 effect on male infertility and its possible pathophysiological mechanisms.Discoveries (Craiova)202192e13110.15190/d.2021.10 34816001
    [Google Scholar]
  171. ZupinL. PascoloL. ZitoG. RicciG. CrovellaS. SARS-CoV-2 and the next generations: Which impact on reproductive tissues?J. Assist. Reprod. Genet.202037102399240310.1007/s10815‑020‑01917‑0 32783136
    [Google Scholar]
  172. HeW. LiuX. FengL. Impact of SARS-CoV-2 on male reproductive health: A review of the literature on male reproductive involvement in SARS-CoV-2.Front. Med. (Lausanne)2020759436410.3389/fmed.2020.594364 33330557
    [Google Scholar]
  173. HallakJ. TeixeiraT.A. BernardesF.S. SARS‐CoV‐2 and its relationship with the genitourinary tract: Implications for male reproductive health in the context of COVID‐19 pandemic.Andrology202191737910.1111/andr.12896 32869939
    [Google Scholar]
  174. MoshrefiM. Ghasemi-EsmailabadS. AliJ. FindikliN. MangoliE. KhaliliM.A. The probable destructive mechanisms behind COVID-19 on male reproduction system and fertility.J. Assist. Reprod. Genet.20213871691170810.1007/s10815‑021‑02097‑1 33977466
    [Google Scholar]
  175. DejucqN. JégouB. Viruses in the mammalian male genital tract and their effects on the reproductive system.Microbiol. Mol. Biol. Rev.200165220823110.1128/MMBR.65.2.208‑231.2001 11381100
    [Google Scholar]
  176. RenX. WangS. ChenX. Multiple expression assessments of ACE2 and TMPRSS2 SARS-CoV-2 entry molecules in the urinary tract and their associations with clinical manifestations of SARS-CoV-2.Infect. Drug Resist.2020133977399010.2147/IDR.S270543 33177848
    [Google Scholar]
  177. NavarraA. AlbaniE. CastellanoS. ArruzzoloL. Levi-SettiP.E. Coronavirus disease-19 infection: Implications on male fertility and reproduction.Front. Physiol.20201157476110.3389/fphys.2020.574761 33312128
    [Google Scholar]
  178. LiuX. ChenY. TangW. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes.Sci. China Life Sci.20206371006101510.1007/s11427‑020‑1705‑0 32361911
    [Google Scholar]
  179. HuangZ. DoD.V. BehD. Effects of acute severe acute respiratory syndrome coronavirus 2 infection on male hormone profile, ACE2 and TMPRSS2 expression, and potential for transmission of severe acute respiratory syndrome coronavirus 2 in semen of Asian men.F S Sci.202231293410.1016/j.xfss.2021.11.003 34841282
    [Google Scholar]
  180. MjaessG. KaramA. AounF. AlbisinniS. RoumeguèreT. COVID-19 and the male susceptibility: The role of ACE2, TMPRSS2 and the androgen receptor.Prog. Urol.2020301048448710.1016/j.purol.2020.05.007 32620366
    [Google Scholar]
  181. MorelliF. MeirellesL.E.F. de SouzaM.V.F. SARS-COV-2 infection in the human reproductive tract of men and nonpregnant women.Am. J. Trop. Med. Hyg.20211043814825 33534765
    [Google Scholar]
  182. StanleyK.E. ThomasE. LeaverM. WellsD. Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues.Fertil. Steril.20201141334310.1016/j.fertnstert.2020.05.001 32622411
    [Google Scholar]
  183. Carneiro GomesP.R. Rodrigues da RochaM.D. da Rocha CoelhoF.A. Alterations of the male and female reproductive systems induced by COVID-19.Wien. Klin. Wochenschr.202113317-1896697210.1007/s00508‑021‑01875‑2 34047837
    [Google Scholar]
  184. SeymenC.M. The other side of COVID‐19 pandemic: Effects on male fertility.J. Med. Virol.20219331396140210.1002/jmv.26667 33200417
    [Google Scholar]
  185. La VigneraS. CannarellaR. CondorelliR.A. TorreF. AversaA. CalogeroA.E. Sex-specific SARS-CoV-2 mortality: Among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis D.Int. J. Mol. Sci.2020218294810.3390/ijms21082948 32331343
    [Google Scholar]
  186. GrönerM.F. CarvalhoR.C. CamilloJ. FerreiraP.R.A. FraiettaR. Effects of COVID-19 on male reproductive system.Int. Braz J Urol202147118519010.1590/s1677‑5538.ibju.2021.99.04 33047924
    [Google Scholar]
  187. MaliA. MagdumM. NovotnyJ. COVID-19 impact on reproduction and fertility.JBRA Assist. Reprod.202125231031310.5935/1518‑0557.20200103 33507714
    [Google Scholar]
  188. BaughnLB SharmaN ElhaikE SekulicA BryceAH FonsecaR Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clin Proc200; 95(9): 1989-99
    [Google Scholar]
  189. HuangH.H. WangP.H. YangY.P. A review of severe acute respiratory syndrome coronavirus 2 infection in the reproductive system.J. Chin. Med. Assoc.2020831089589710.1097/JCMA.0000000000000388 33009240
    [Google Scholar]
  190. WangZ. XuX. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells.Cells20209492010.3390/cells9040920 32283711
    [Google Scholar]
  191. SharmaI. KumariP. SharmaA. SahaS.C. SARS-CoV-2 and the reproductive system: Known and the unknown.!!Middle East Fertil. Soc. J.20212611910.1186/s43043‑020‑00046‑z 33437145
    [Google Scholar]
  192. KharbachY. KhalloukA. Male genital damage in COVID-19 patients: Are available data relevant?Asian J. Urol.20218332432610.1016/j.ajur.2020.06.005 32837913
    [Google Scholar]
  193. MukherjeeA.G. WanjariU.R. KannampuzhaS. Expression of Concern: The pathophysiological and immunological background of the monkeypox virus infection: An update.J. Med. Virol.2023951e2820610.1002/jmv.28206 36217803
    [Google Scholar]
  194. KielianM. Enhancing host cell infection by SARS-CoV-2.Science2020370651876576610.1126/science.abf0732 33184193
    [Google Scholar]
  195. BaggenJ. VanstreelsE. JansenS. DaelemansD. Cellular host factors for SARS-CoV-2 infection.Nat. Microbiol.20216101219123210.1038/s41564‑021‑00958‑0 34471255
    [Google Scholar]
  196. SigristC.J.A. BridgeA. Le MercierP. A potential role for integrins in host cell entry by SARS-CoV-2.Antiviral Res.202017710475910.1016/j.antiviral.2020.104759 32130973
    [Google Scholar]
  197. FlynnR.A. BelkJ.A. QiY. Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions.Cell2021184923942411.e1610.1016/j.cell.2021.03.012 33743211
    [Google Scholar]
  198. BojkovaD. KlannK. KochB. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets.Nature2020583781646947210.1038/s41586‑020‑2332‑7 32408336
    [Google Scholar]
  199. NguyenH.T. ZhangS. WangQ. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects.J. Virol.2021955e02304e0232010.1128/JVI.02304‑20 33310888
    [Google Scholar]
  200. CaldasL.A. CarneiroF.A. MonteiroF.L. Intracellular host cell membrane remodelling induced by SARS‐CoV‐2 infection in vitro.Biol. Cell2021113628129310.1111/boc.202000146 33600624
    [Google Scholar]
  201. SunJ. YeF. WuA. Comparative transcriptome analysis reveals the intensive early stage responses of host cells to SARS-CoV-2infection.Front. Microbiol.20201159385710.3389/fmicb.2020.593857 33324374
    [Google Scholar]
  202. Al AdemK. ShantiA. StefaniniC. LeeS. Inhibition of SARS-CoV-2entry into host cells using small molecules.Pharmaceuticals (Basel)2020131244710.3390/ph13120447 33302344
    [Google Scholar]
  203. EvansJ.P. LiuS.L. Role of host factors in SARS-CoV-2 entry.J. Biol. Chem.2021297110084710.1016/j.jbc.2021.100847 34058196
    [Google Scholar]
  204. Samavarchi-TehraniP. AbdouniH. KnightJ.D. SARS-CoV-2–host proximity interactome.BioRxiv2020
    [Google Scholar]
  205. GyebiG.A. OgunyemiO.M. IbrahimI.M. OgunroO.B. AdegunloyeA.P. AfolabiS.O. SARS-CoV-2 host cell entry: An in silico investigation of potential inhibitory roles of terpenoids.J. Genet. Eng. Biotechnol.202119111310.1186/s43141‑021‑00209‑z 34351542
    [Google Scholar]
  206. ButnariuA.B. LookA. GrilloM. TabishT.A. McGarveyM.J. PranjolM.Z.I. SARS-CoV-2–host cell surface interactions and potential antiviral therapies.Interface Focus20221212020008110.1098/rsfs.2020.0081 34956606
    [Google Scholar]
  207. LimS.P. Targeting SARS-CoV-2 and host cell receptor interactions.Antiviral Res.202321010551410.1016/j.antiviral.2022.105514 36581047
    [Google Scholar]
  208. ShahV.K. FirmalP. AlamA. GangulyD. ChattopadhyayS. Overview of immune response during SARS-CoV-2 infection: Lessons from the past.Front. Immunol.202011194910.3389/fimmu.2020.01949
    [Google Scholar]
  209. DoceaA. TsatsakisA. AlbulescuD. A new threat from an old enemy: Re emergence of coronavirus.(Review) Int. J. Mol. Med.20204561631164310.3892/ijmm.2020.4555 32236624
    [Google Scholar]
  210. MossP. The T cell immune response against SARS-CoV-2.Nat. Immunol.202223218619310.1038/s41590‑021‑01122‑w 35105982
    [Google Scholar]
  211. KellamP. BarclayW. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection.J. Gen. Virol.2020101879179710.1099/jgv.0.001439 32430094
    [Google Scholar]
  212. PrimoracD. VrdoljakK. BrlekP. Adaptive immune responses and immunity to SARS-CoV-2.Front. Immunol.20221384858210.3389/fimmu.2022.848582 35603211
    [Google Scholar]
  213. GudbjartssonD.F. NorddahlG.L. MelstedP. Humoral immune response to SARS-CoV-2 in Iceland.N. Engl. J. Med.2020383181724173410.1056/NEJMoa2026116 32871063
    [Google Scholar]
  214. BurioniR. TopolE.J. Assessing the human immune response to SARS-CoV-2 variants.Nat. Med.202127457157210.1038/s41591‑021‑01290‑0 33649495
    [Google Scholar]
  215. CollierD.A. FerreiraI.A.T.M. KotagiriP. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2.Nature2021596787241742210.1038/s41586‑021‑03739‑1 34192737
    [Google Scholar]
  216. ManggeH. KneihslM. SchnedlW. SendlhoferG. CurcioF. DomenisR. Immune Responses against SARS-CoV-2—Questions and Experiences.Biomedicines2021910134210.3390/biomedicines9101342 34680460
    [Google Scholar]
  217. LotfiM. RezaeiN. SARS‐CoV‐2: A comprehensive review from pathogenicity of the virus to clinical consequences.J. Med. Virol.202092101864187410.1002/jmv.26123 32492197
    [Google Scholar]
  218. NassauD.E. BestJ.C. KreschE. GonzalezD.C. KhodamoradiK. RamasamyR. Impact of the SARS‐CoV‐2 virus on male reproductive health.BJU Int.2022129214315010.1111/bju.15573 34402155
    [Google Scholar]
  219. SamuelR.M. MajdH. RichterM.N. Androgen signaling regulates SARS-CoV-2 receptor levels and is associated with severe SARS-COV-2 symptoms in men.Cell Stem Cell2020276876889.e1210.1016/j.stem.2020.11.009 33232663
    [Google Scholar]
  220. ConnellyZ.M. WhitakerD. DulleaA. RamasamyR. SARS-CoV-2 effects on the male genitourinary system.Am. J. Clin. Exp. Urol.2022104199209 36051611
    [Google Scholar]
  221. Carp-VeliscuA. MehedintuC. FrincuF. The effects of SARS-CoV-2 infection on female fertility: A review of the literature.Int. J. Environ. Res. Public Health202219298410.3390/ijerph19020984 35055804
    [Google Scholar]
  222. SansoneA. MollaioliD. CioccaG. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak.J. Endocrinol. Invest.202144222323110.1007/s40618‑020‑01350‑1 32661947
    [Google Scholar]
  223. BhattacharyaK. MukhopadhyayL.D. GoswamiR. SARS-CoV-2 infection and human semen: Possible modes of contamination and transmission.Middle East Fertil. Soc. J.20212611810.1186/s43043‑021‑00063‑6 34177252
    [Google Scholar]
  224. ChabrollesH. Pons-RejrajiH. ChaputL. Validation of a SARS-CoV-2 RT-PCR assay: A requirement to evaluate viral contamination in human semen.Reprod. Biomed. Online20224561247125410.1016/j.rbmo.2022.09.004 36270932
    [Google Scholar]
  225. JeffersonT. SpencerE.A. BrasseyJ. HeneghanC. Viral cultures for SARS-CoV-2 infectivity assessment-a systematic review (Update 3).MedRxiv2020
    [Google Scholar]
  226. MardianY. KosasihH. KaryanaM. NealA. LauC.Y. Review of current SARS-CoV-2 diagnostics and opportunities for further development.Front. Med. (Lausanne)2021861509910.3389/fmed.2021.615099 34026773
    [Google Scholar]
  227. PaoliD. PallottiF. NigroG. Molecular diagnosis of SARS-CoV-2 in seminal fluid.J. Endocrinol. Invest.202144122675268410.1007/s40618‑021‑01580‑x 33929709
    [Google Scholar]
  228. FanC. LuW. LiK. DingY. WangJ. ACE2 expression in kidney and testis may cause kidney and testis infection in SARS-CoV-2 patients.Front. Med. (Lausanne)2021756389310.3389/fmed.2020.563893 33521006
    [Google Scholar]
  229. Becerra-DiazM. SongM. HellerN. Androgen and androgen receptors as regulators of monocyte and macrophage biology in the healthy and diseased lung.Front. Immunol.202011169810.3389/fimmu.2020.01698 32849595
    [Google Scholar]
  230. LimaM. SiokasV. AloizouA.M. Unraveling the possible routes of SARS-CoV-2 invasion into the central nervous system.Curr. Treat. Options Neurol.202022113710.1007/s11940‑020‑00647‑z 32994698
    [Google Scholar]
  231. OlaniyanO.T. DareA. OkotieG.E. Testis and blood-testis barrier in COVID-19 infestation: Role of angiotensin-converting enzyme 2 in male infertility.J. Basic Clin. Physiol. Pharmacol.20203162020015610.1515/jbcpp‑2020‑0156 33006953
    [Google Scholar]
  232. MaL. XieW. LiD. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study.MedRxiv2020
    [Google Scholar]
  233. FigueiredoA.F.A. WnukN.T. BrenerM.R.G. Acute murine-betacoronavirus infection impairs testicular steroidogenesis and the quality of sperm production.J. Reprod. Immunol.202416310421410.1016/j.jri.2024.104214 38508038
    [Google Scholar]
  234. JaraL.J. López-ZamoraB. Ordoñez-GonzálezI. The immune-neuroendocrine system in COVID-19, advanced age and rheumatic diseases.Autoimmun. Rev.2021201110294610.1016/j.autrev.2021.102946 34509651
    [Google Scholar]
  235. DuttaS. SenguptaP. SlamaP. RoychoudhuryS. Oxidative stress, testicular inflammatory pathways, and male reproduction.Int. J. Mol. Sci.202122181004310.3390/ijms221810043 34576205
    [Google Scholar]
  236. EdenfieldR.C. EasleyC.A.IV Implications of testicular ACE2 and the renin–angiotensin system for SARS-CoV-2 on testis function.Nat. Rev. Urol.202219211612710.1038/s41585‑021‑00542‑5 34837081
    [Google Scholar]
  237. PeirouviT. AliaghaeiA. Eslami FarsaniB. COVID-19 disrupts the blood–testis barrier through the induction of inflammatory cytokines and disruption of junctional proteins.Inflamm. Res.20217010-121165117510.1007/s00011‑021‑01497‑4 34436630
    [Google Scholar]
  238. SongC. WangY. LiW. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients.Biol. Reprod.202010314610.1093/biolre/ioaa050 32297920
    [Google Scholar]
  239. HezaveheiM. ShokoohianB. Nasr-EsfahaniM.H. Possible male reproduction complications after coronavirus pandemic.Cell J.2021234382388 34455712
    [Google Scholar]
  240. HoffmannM. Kleine-WeberH. SchroederS. SARS-CoV-2cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280
    [Google Scholar]
  241. PanF. XiaoX. GuoJ. No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease 2019.Fertil. Steril.202011361135113910.1016/j.fertnstert.2020.04.024 32482249
    [Google Scholar]
  242. BreidenbachJ. DubeP. GhoshS. Impact of comorbidities on SARS-CoV-2 viral entry-related genes.J. Pers. Med.202010414610.3390/jpm10040146 32992731
    [Google Scholar]
  243. LoS.P. HsiehT.C. PastuszakA.W. HotalingJ.M. PatelD.P. Effects of SARS CoV-2, COVID-19, and its vaccines on male sexual health and reproduction: Where do we stand?Int. J. Impot. Res.202234213814410.1038/s41443‑021‑00483‑y 34707243
    [Google Scholar]
  244. KhaliliM.A. LeisegangK. MajzoubA. Male fertility and the COVID-19 pandemic: Systematic review of the literature.World J. Mens Health202038450652010.5534/wjmh.200134 32814369
    [Google Scholar]
  245. MaX. GuanC. ChenR. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients.Cell. Mol. Immunol.202118248748910.1038/s41423‑020‑00604‑5 33318629
    [Google Scholar]
  246. AchuaJ.K. ChuK.Y. IbrahimE. Histopathology and ultrastructural findings of fatal SARS-CoV-2 infections on testis.World J. Mens Health2021391657410.5534/wjmh.200170 33151050
    [Google Scholar]
  247. FlaifelA. GuzzettaM. OccidentalM. Testicular changes associated with severe acute respiratory Syndrome Coronavirus 2 (SARS-CoV-2).Arch. Pathol. Lab. Med.2021145189
    [Google Scholar]
  248. ChenL. HuangX. YiZ. Ultrasound imaging findings of acute testicular infection in patients with coronavirus disease 2019.J. Ultrasound Med.20214091787179410.1002/jum.15558 33174632
    [Google Scholar]
  249. Ardestani ZadehA. ArabD. COVID-19 and male reproductive system: Pathogenic features and possible mechanisms.J. Mol. Histol.202152586987810.1007/s10735‑021‑10003‑3 34232425
    [Google Scholar]
  250. OmolaoyeT.S. JalaleddineN. Cardona MayaW.D. du PlessisS.S. Mechanisms of SARS-CoV-2 and male infertility: Could connexin and pannexin play a role?Front. Physiol.20221386667510.3389/fphys.2022.866675 35721552
    [Google Scholar]
  251. TahaA.E. Can COVID-19 Be Transmitted Sexually by Semen?J. Pure Appl. Microbiol.20201442287229310.22207/JPAM.14.4.06
    [Google Scholar]
  252. GonzalezD.C. KhodamoradiK. PaiR. A systematic review on the investigation of SARS-CoV-2 in semen.Res. Rep. Urol.20201261562110.2147/RRU.S277679 33294423
    [Google Scholar]
  253. DelfinoM. GuidaM. PatrìA. SpiritoL. GalloL. FabbrociniG. SARS‐CoV‐2 possible contamination of genital area: Implications for sexual and vertical transmission routes.J. Eur. Acad. Dermatol. Venereol.2020348e364e36510.1111/jdv.16591 32379909
    [Google Scholar]
  254. BlackwellC.W. Reducing sexually associated transmission of COVID-19 in men who have sex with men.J. Am. Assoc. Nurse Pract.202133111050105410.1097/JXX.0000000000000475 32773533
    [Google Scholar]
  255. CabelloF. SánchezF. FarréJ.M. MontejoA.L. Consensus on recommendations for safe sexual activity during the SARS-CoV-2 coronavirus pandemic.J. Clin. Med.202097229710.3390/jcm9072297 32698369
    [Google Scholar]
  256. LaraL.A.S. MarinoF.F.L.O. AbdoC.H. Safe sexual practices in the SARS-CoV-2 pandemic period.Sex. Med.20208478879010.1016/j.esxm.2020.08.006 32895613
    [Google Scholar]
  257. AmirianE.S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health.Int. J. Infect. Dis.20209536337010.1016/j.ijid.2020.04.057 32335340
    [Google Scholar]
  258. MadewellZ.J. YangY. LonginiI.M.Jr HalloranM.E. DeanN.E. Household transmission of SARS-CoV-2: A systematic review and meta-analysis.JAMA Netw. Open2020312e203175610.1001/jamanetworkopen.2020.31756 33315116
    [Google Scholar]
  259. KlompasM. BakerM.A. RheeC. Airborne transmission of SARS-CoV-2: Theoretical considerations and available evidence.JAMA2020324544144210.1001/jama.2020.12458 32749495
    [Google Scholar]
  260. HowardJ. HuangA. LiZ. An evidence review of face masks against COVID-19.Proc. Natl. Acad. Sci. USA20211184e201456411810.1073/pnas.2014564118 33431650
    [Google Scholar]
  261. EikenberryS.E. MancusoM. IboiE. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic.Infect. Dis. Model.2020529330810.1016/j.idm.2020.04.001 32355904
    [Google Scholar]
  262. MostazaJ.M. García-IglesiasF. González-AlegreT. Clinical course and prognostic factors of COVID-19 infection in an elderly hospitalized population.Arch. Gerontol. Geriatr.20209110420410.1016/j.archger.2020.104204 32771883
    [Google Scholar]
  263. KozlovE.M. IvanovaE. GrechkoA.V. WuW.K. StarodubovaA.V. OrekhovA.N. Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection.Diseases2021911710.3390/diseases9010017 33668325
    [Google Scholar]
  264. UrsoC. CaimiG. Oxidative stress and endothelial dysfunction.Minerva Med.201110215977 21317849
    [Google Scholar]
  265. SansoneA. MollaioliD. LimoncinE. The sexual long COVID (SLC): Erectile dysfunction as a biomarker of systemic complications for SARS-CoV-2 long haulers.Sex. Med. Rev.202210227128510.1016/j.sxmr.2021.11.001 34933829
    [Google Scholar]
  266. KataokaT. HottaY. MaedaY. KimuraK. Testosterone deficiency causes endothelial dysfunction via elevation of asymmetric dimethylarginine and oxidative stress in castrated rats.J. Sex. Med.201714121540154810.1016/j.jsxm.2017.11.001 29198509
    [Google Scholar]
  267. SchönrichG. RafteryM.J. SamstagY. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression.Adv. Biol. Regul.20207710074110.1016/j.jbior.2020.100741 32773102
    [Google Scholar]
  268. CecchiniR. CecchiniA.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression.Med. Hypotheses202014311010210.1016/j.mehy.2020.110102 32721799
    [Google Scholar]
  269. TvrdáE. KňažickáZ. BárdosL. MassányiP. LukáčN. Impact of oxidative stress on male fertility — A review.Acta Vet. Hung.201159446548410.1556/avet.2011.034 22079708
    [Google Scholar]
  270. PetersE.M.J. SchedlowskiM. WatzlC. GimsaU. Can stress interact with SARS-CoV-2? A narrative review with a focus on stress-reducing interventions that may improve defence against SARS-CoV-2.Psychother. Psychosom. Med. Psychol.20217126171 33440452
    [Google Scholar]
  271. AlamM.S. CzajkowskyD.M. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities.Cytokine Growth Factor Rev.202263445710.1016/j.cytogfr.2021.11.001 34836751
    [Google Scholar]
  272. GainC. SongS. AngtuacoT. SattaS. KelesidisT. The role of oxidative stress in the pathogenesis of infections with coronaviruses.Front. Microbiol.202313111193010.3389/fmicb.2022.1111930 36713204
    [Google Scholar]
  273. NguyenT.T. HulmeJ. TranH.D. VoT.K. VoG.V. The potential impact of COVID-19 on male reproductive health.J. Endocrinol. Invest.20224581483149510.1007/s40618‑022‑01764‑z 35181849
    [Google Scholar]
  274. AdamyanL. ElaginV. VechorkoV. A review of recent studies on the effects of SARS-CoV-2 infection and SARS-CoV-2 vaccines on male reproductive health.Med. Sci. Monit.202228e935879e110.12659/MSM.935879 35313326
    [Google Scholar]
  275. HernándezA.F. CalinaD. PoulasK. DoceaA.O. TsatsakisA.M. Safety of COVID-19 vaccines administered in the EU: Should we be concerned?Toxicol. Rep.2021887187910.1016/j.toxrep.2021.04.003 33898273
    [Google Scholar]
  276. Tur-KaspaI. Tur-KaspaT. HildebrandG. CohenD. SARS-CoV-2 may affect male fertility but is not sexually transmitted: A systematic review.F S Rev.202122140149
    [Google Scholar]
  277. ReschiniM. PagliardiniL. BoeriL. SARS-CoV-2 vaccination does not affect reproductive health parameters in men.Front. Public Health20221083996710.3389/fpubh.2022.839967 35186854
    [Google Scholar]
  278. MuehlenbeinM.P. BribiescasR.G. Testosterone-mediated immune functions and male life histories.Am. J. Hum. Biol.200517552755810.1002/ajhb.20419 16136532
    [Google Scholar]
  279. WalenskyR.P. WalkeH.T. FauciA.S. SARS-CoV-2 variants of concern in the United States—challenges and opportunities.JAMA2021325111037103810.1001/jama.2021.229433595644
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265323126241021044252
Loading
/content/journals/iddt/10.2174/0118715265323126241021044252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test