Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

The resistance of biofilms to antimicrobial agents presents numerous challenges. The formation of biofilms leads to enhanced resistance to adverse environmental conditions, as well as to antimicrobial agents. Natural compounds have been of interest as potential therapeutic agents. Emodin, a natural anthraquinone compound, has recently attracted attention for its potential as a broad-spectrum antimicrobial agent. This ability could potentially help combat biofilm-associated infections and enhance the effectiveness of antimicrobial therapies. This review was carried out to evaluate the effects of emodin on microbial biofilms, determine its effectiveness in inhibiting and reducing biofilm formation, eradicate biofilms, and examine its antimicrobial effects. Our study shows that the use of emodin as an additional therapeutic agent in combating microbial biofilms holds considerable promise. As researchers continue to investigate how emodin interacts with microbial biofilms, there is excitement about the potential applications of this natural compound in addressing biofilm-related issues. However, it is suggested to pay more attention to evaluating the effects of emodin on microbial biofilms in future studies.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265329198241105030008
2024-12-20
2025-11-03
Loading full text...

Full text loading...

References

  1. OzmaM.A. KhodadadiE. PakdelF. Baicalin, a natural antimicrobial and anti-biofilm agent.J. Herb. Med.20212710043210.1016/j.hermed.2021.100432
    [Google Scholar]
  2. TruchadoP. Giménez-BastidaJ.A. LarrosaM. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones.J. Agric. Food Chem.201260368885889410.1021/jf301365a 22533445
    [Google Scholar]
  3. TeymouriS. PourhajibagherM. BahadorA. Exosomes: Friends or Foes in Microbial Infections?Infect. Disord. Drug Targets2024245e17012422573010.2174/0118715265264388231128045954 38317472
    [Google Scholar]
  4. Chinemerem NwobodoD. UgwuM.C. Oliseloke AnieC. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace.J. Clin. Lab. Anal.2022369e2465510.1002/jcla.24655 35949048
    [Google Scholar]
  5. BostanghadiriN. ArdebiliA. GhalavandZ. Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates.BMC Res. Notes202114115110.1186/s13104‑021‑05567‑y 33879237
    [Google Scholar]
  6. ZhaoA. SunJ. LiuY. Understanding bacterial biofilms: From definition to treatment strategies.Front. Cell. Infect. Microbiol.202313113794710.3389/fcimb.2023.1137947 37091673
    [Google Scholar]
  7. de CarvalhoC.C. Biofilms: Microbial strategies for surviving UV exposure.Adv. Exp. Med. Biol.201799623323910.1007/978‑3‑319‑56017‑5_19
    [Google Scholar]
  8. MarinoA. BellinghieriV. NostroA. In vitro effect of branch extracts of Juniperus species from Turkey on Staphylococcus aureus biofilm.FEMS Immunol. Med. Microbiol.201059347047610.1111/j.1574‑695X.2010.00705.x 20584079
    [Google Scholar]
  9. VetrivelA. RamasamyM. VetrivelP. Pseudomonas aeruginosa biofilm formation and its control.Biologics (Basel)20211331233610.3390/biologics1030019
    [Google Scholar]
  10. SamrotA.V. Abubakar MohamedA. FaradjevaE. Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds-.Medicina (Kaunas)202157883910.3390/medicina57080839 34441045
    [Google Scholar]
  11. GoodwineJ. GilJ. DoironA. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo.Sci. Rep.201991376310.1038/s41598‑019‑40378‑z 30842579
    [Google Scholar]
  12. ShamimA. AliA. IqbalZ. Natural medicine a promising candidate in combating microbial biofilm.Antibiotics (Basel)202312229910.3390/antibiotics12020299 36830210
    [Google Scholar]
  13. AchinasS. CharalampogiannisN. EuverinkG.J.W. A brief recap of microbial adhesion and biofilms.Appl. Sci. (Basel)2019914280110.3390/app9142801
    [Google Scholar]
  14. LuL. HuW. TianZ. Developing natural products as potential anti-biofilm agents.Chin. Med.20191411110.1186/s13020‑019‑0232‑2 30936939
    [Google Scholar]
  15. DongD. ThomasN. ThierryB. VreugdeS. PrestidgeC.A. WormaldP.J. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm.PLoS One2015106e013180610.1371/journal.pone.0131806 26125555
    [Google Scholar]
  16. BjarnsholtT. CiofuO. MolinS. GivskovM. Høiby N. Applying insights from biofilm biology to drug development — can a new approach be developed?Nat. Rev. Drug Discov.2013121079180810.1038/nrd4000 24080700
    [Google Scholar]
  17. VerderosaA.D. TotsikaM. Fairfull-SmithK.E. Bacterial biofilm eradication agents: a current review.Front Chem.2019782410.3389/fchem.2019.00824 31850313
    [Google Scholar]
  18. LebeauxD. ChauhanA. RenduelesO. BeloinC. From in vitro to in vivo models of bacterial biofilm-related infections.Pathogens20132228835610.3390/pathogens2020288 25437038
    [Google Scholar]
  19. SharmaD. MisbaL. KhanA.U. Antibiotics versus biofilm: an emerging battleground in microbial communities.Antimicrob. Resist. Infect. Control2019817610.1186/s13756‑019‑0533‑3 31131107
    [Google Scholar]
  20. LeeJ.H. ParkJ.H. ChoH.S. JooS.W. ChoM.H. LeeJ. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus.Biofouling201329549149910.1080/08927014.2013.788692 23668380
    [Google Scholar]
  21. ChenL. BuQ. XuH. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro.Microbiol. Res.2016186-187445110.1016/j.micres.2016.03.003 27242142
    [Google Scholar]
  22. HobsonC. ChanA.N. WrightG.D. The antibiotic resistome: a guide for the discovery of natural products as antimicrobial agents.Chem. Rev.202112163464349410.1021/acs.chemrev.0c01214 33606500
    [Google Scholar]
  23. VaouN. StavropoulouE. VoidarouC. TsigalouC. BezirtzoglouE. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives.Microorganisms2021910204110.3390/microorganisms9102041 34683362
    [Google Scholar]
  24. ManandharS. LuitelS. DahalR.K. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria.J. Trop. Med.20192019189534010.1155/2019/1895340
    [Google Scholar]
  25. StanD. EnciuA.M. MateescuA.L. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation.Front. Pharmacol.20211272323310.3389/fphar.2021.723233 34552489
    [Google Scholar]
  26. YangS.K. LowL.Y. YapP.S.X. Plant-derived antimicrobials: Insights into mitigation of antimicrobial resistance.Rec. Nat. Prod.201812429539610.25135/rnp.41.17.09.058
    [Google Scholar]
  27. AkkolE.K. TatlıI.I. KaratoprakG.Ş. Is emodin with anticancer effects completely innocent? Two sides of the coin.Cancers (Basel)20211311273310.3390/cancers13112733 34073059
    [Google Scholar]
  28. MitraS. AnjumJ. MuniM. Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action.Biomed. Pharmacother.202214911287710.1016/j.biopha.2022.112877 35367766
    [Google Scholar]
  29. WangD. WangX.H. YuX. Pharmacokinetics of anthraquinones from medicinal plants.Front. Pharmacol.20211263899310.3389/fphar.2021.638993 33935728
    [Google Scholar]
  30. DongX. FuJ. YinX. Emodin: A review of its pharmacology, toxicity and pharmacokinetics.Phytother. Res.20163081207121810.1002/ptr.5631 27188216
    [Google Scholar]
  31. JaneczkoM. MasłykM. KubińskiK. GolczykH. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans.Yeast201734625326510.1002/yea.3230 28181315
    [Google Scholar]
  32. LiL. SongX. YinZ. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro.Microbiol. Res.2016186-18713914510.1016/j.micres.2016.03.008 27242151
    [Google Scholar]
  33. YanX. GuS. ShiY. CuiX. WenS. GeJ. The effect of emodin on Staphylococcus aureus strains in planktonic form and biofilm formation in vitro.Arch. Microbiol.201719991267127510.1007/s00203‑017‑1396‑8 28616631
    [Google Scholar]
  34. CuiY. ChenL.J. HuangT. YingJ.Q. LiJ. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin.Chin. J. Nat. Med.202018642543510.1016/S1875‑5364(20)30050‑9 32503734
    [Google Scholar]
  35. ShaoQ. LiuT. WangW. LiuT. JinX. ChenZ. Promising role of emodin as therapeutics to against viral infections.Front. Pharmacol.20221390262610.3389/fphar.2022.902626 35600857
    [Google Scholar]
  36. FalagasM.E. BliziotisI.A. KasiakouS.K. SamonisG. AthanassopoulouP. MichalopoulosA. Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria.BMC Infect. Dis.2005512410.1186/1471‑2334‑5‑24 15819983
    [Google Scholar]
  37. LiuS. LuoX.H. LiuY.F. ZouboulisC.C. ShiG. Emodin exhibits anti-acne potential by inhibiting cell growth, lipogenesis, and inflammation in human SZ95 sebocytes.Sci. Rep.20231312157610.1038/s41598‑023‑48709‑x 38062074
    [Google Scholar]
  38. XunW. JiM. MaZ. Dietary emodin alleviates lipopolysaccharide-induced intestinal mucosal barrier injury by regulating gut microbiota in piglets.Anim. Nutr.20231415216210.1016/j.aninu.2023.05.004 37455790
    [Google Scholar]
  39. GaoR. WangC. HanA. Emodin improves intestinal health and immunity through modulation of gut microbiota in mice infected by pathogenic Escherichia coli O1.Animals (Basel)20211111331410.3390/ani11113314 34828045
    [Google Scholar]
  40. Ubbink-KokT. AndersonJ.A. KoningsW.N. Inhibition of electron transfer and uncoupling effects by emodin and emodinanthrone in Escherichia coli.Antimicrob. Agents Chemother.198630114715110.1128/AAC.30.1.147 3019234
    [Google Scholar]
  41. DingX. YinB. QianL. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm.J. Med. Microbiol.201160121827183410.1099/jmm.0.024166‑0 21852522
    [Google Scholar]
  42. ChukwujekwuJ.C. CoombesP.H. MulhollandD.A. van StadenJ. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis.S. Afr. J. Bot.200672229529710.1016/j.sajb.2005.08.003
    [Google Scholar]
  43. KimJ.R. OhD.R. ChaM.H. Protective effect of polygoni cuspidati radix and emodin on Vibrio vulnificus cytotoxicity and infection.J. Microbiol.200846673774310.1007/s12275‑008‑0232‑x 19107405
    [Google Scholar]
  44. BasuS. GhoshA. HazraB. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. And Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents.Phytother. Res.2005191088889410.1002/ptr.1752 16261521
    [Google Scholar]
  45. LuC. WangH. LvW. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila.Fish. Sci.201177337538410.1007/s12562‑011‑0341‑z
    [Google Scholar]
  46. PourhajibagherM. Keshavarz ValianN. BahadorA. Theranostic nanoplatforms of emodin-chitosan with blue laser light on enhancing the anti-biofilm activity of photodynamic therapy against Streptococcus mutans biofilms on the enamel surface.BMC Microbiol.20222216810.1186/s12866‑022‑02481‑6 35246026
    [Google Scholar]
  47. YangY.B. WangS. WangC. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.Arch. Microbiol.2015197101173118010.1007/s00203‑015‑1158‑4 26446827
    [Google Scholar]
  48. DingW. SunJ. LianH. The influence of shuttle-shape emodin nanoparticles on the Streptococcus suis biofilm.Front. Pharmacol.2018922710.3389/fphar.2018.00227 29593544
    [Google Scholar]
  49. HatanoT. UebayashiH. ItoH. ShiotaS. TsuchiyaT. YoshidaT. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus.Chem. Pharm. Bull. (Tokyo)19994781121112710.1248/cpb.47.1121 10478467
    [Google Scholar]
  50. PourhajibagherM. Rahimi-esboeiB. AhmadiH. BahadorA. The anti-biofilm capability of nano-emodin-mediated sonodynamic therapy on multi-species biofilms produced by burn wound bacterial strains.Photodiagn. Photodyn. Ther.20213410228810.1016/j.pdpdt.2021.102288 33836275
    [Google Scholar]
  51. ZhangL. LiangE. ChengY. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection?Biomed. Pharmacother.202012811018410.1016/j.biopha.2020.110184 32450528
    [Google Scholar]
  52. DaX. NishiyamaY. TieD. HeinK.Z. YamamotoO. MoritaE. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi.Sci. Rep.201991168310.1038/s41598‑019‑38916‑w 30737463
    [Google Scholar]
  53. VitielloA. FerraraF. BoccellinoM. Antifungal drug resistance: an emergent health threat.Biomedicines2023114106310.3390/biomedicines11041063 37189681
    [Google Scholar]
  54. MartinezL.R. FriesB.C. Fungal biofilms: relevance in the setting of human disease.Curr. Fungal Infect. Rep.20104426627510.1007/s12281‑010‑0035‑5 21660222
    [Google Scholar]
  55. DumètreA. AubertD. PuechP.H. HohweyerJ. AzasN. VillenaI. Interaction forces drive the environmental transmission of pathogenic protozoa.Appl. Environ. Microbiol.201278490591210.1128/AEM.06488‑11 22156429
    [Google Scholar]
  56. MbwamboZ.H. ApersS. MoshiM.J. Anthranoid compounds with antiprotozoal activity from Vismia orientalis.Planta Med.200470870671010.1055/s‑2004‑827199 15368649
    [Google Scholar]
  57. WangX.F. LuW.J. ChenJ.Y. Studies on the chemical constituents of Ventilago leiocarpa Benth.Yao Xue Xue Bao1993282122125 8328280
    [Google Scholar]
  58. DangS.S. JiaX.L. SongP. Inhibitory effect of emodin and Astragalus polysaccharideon the replication of HBV.World J. Gastroenterol.200915455669567310.3748/wjg.15.5669 19960563
    [Google Scholar]
  59. ShuangsuoD. ZhengguoZ. YunruC. Inhibition of the replication of hepatitis B virus in vitro by emodin.Med. Sci. Monit.2006129BR302BR306 16940925
    [Google Scholar]
  60. XiongH.R. LuoJ. HouW. XiaoH. YangZ.Q. The effect of emodin, an anthraquinone derivative extracted from the roots of Rheum tanguticum, against herpes simplex virus in vitro and in vivo.J. Ethnopharmacol.2011133271872310.1016/j.jep.2010.10.059 21050882
    [Google Scholar]
  61. GharbiJ. Hadj HassineI. HassineM. Viral Protein VP1 Virus-like Particles (VLP) of CVB4 Induces Protective Immunity against Lethal Challenges with Diabetogenic E2 and Wild Type JBV Strains in Mice Model.Viruses202315487810.3390/v15040878 37112858
    [Google Scholar]
  62. LiuZ. WeiF. ChenL.J. In vitro and in vivo studies of the inhibitory effects of emodin isolated from Polygonum cuspidatum on Coxsakievirus B4.Molecules20131810118421185810.3390/molecules181011842 24071990
    [Google Scholar]
  63. HoT. WuS. ChenJ. LiC. HsiangC. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction.Antiviral Res.20077429210110.1016/j.antiviral.2006.04.014 16730806
    [Google Scholar]
  64. DaiJ.P. WangQ.W. SuY. Emodin inhibition of influenza A virus replication and influenza viral pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB pathways.Molecules20172210175410.3390/molecules22101754 29057806
    [Google Scholar]
  65. St DenisT.G. DaiT. IziksonL. All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease.Virulence20112650952010.4161/viru.2.6.17889 21971183
    [Google Scholar]
  66. MesquitaMQ DiasCJ GamelasS FardilhaM NevesMGPMS FaustinoMAF An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy. An Acad Bras Cienc2018901 (suppl 2)(Suppl. 2)11013010.1590/0001‑3765201720170800 29873674
    [Google Scholar]
  67. ZhangX. LiuT. LiZ. ZhangX. Progress of photodynamic therapy applications in the treatment of musculoskeletal sarcoma.(Review).Oncol. Lett.2014841403140810.3892/ol.2014.2332 25202342
    [Google Scholar]
  68. PolatE. KangK. Natural photosensitizers in antimicrobial photodynamic therapy.Biomedicines20219658410.3390/biomedicines9060584 34063973
    [Google Scholar]
  69. SharmaS.K. DaiT. KharkwalG.B. Drug discovery of antimicrobial photosensitizers using animal models.Curr. Pharm. Des.201117131303131910.2174/138161211795703735 21504410
    [Google Scholar]
  70. RibeiroM. GomesI.B. SaavedraM.J. Simões M. Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections.Lett. Appl. Microbiol.202275354856410.1111/lam.13762 35689422
    [Google Scholar]
  71. FekrazadR. NejatA. KalhoriK.A. Chapter 10 - Antimicrobial photodynamic therapy with nanoparticles versus conventional photosensitizer in oral diseases. in: nanostructures for antimicrobial therapy micro and nano technologies.Elsevier201723725910.1016/B978‑0‑323‑46152‑8.00010‑X
    [Google Scholar]
  72. RitaccaA.G. Prejanò M, Alberto ME, Marino T, Toscano M, Russo N. On the antibacterial photodynamic inactivation mechanism of Emodin and Dermocybin natural photosensitizers: A theoretical investigation.J. Comput. Chem.202445151254126010.1002/jcc.27326 38351736
    [Google Scholar]
  73. AzizB. AzizI. KhurshidA. An overview of potential natural photosensitizers in cancer photodynamic therapy.Biomedicines202311122410.3390/biomedicines11010224 36672732
    [Google Scholar]
  74. Stompor-GorącyM. The health benefits of emodin, a natural anthraquinone derived from rhubarb—a summary update.Int. J. Mol. Sci.20212217952210.3390/ijms22179522 34502424
    [Google Scholar]
  75. DuanF. XinG. NiuH. HuangW. Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA.Sci. Rep.2017711272110.1038/s41598‑017‑12905‑3 28983096
    [Google Scholar]
  76. QunT. ZhouT. HaoJ. Antibacterial activities of anthraquinones: structure–activity relationships and action mechanisms.RSC Med. Chem.20231481446147110.1039/D3MD00116D 37593578
    [Google Scholar]
  77. JiC. XinG. DuanF. HuangW. TanT. Study on the antibacterial activities of emodin derivatives against clinical drug-resistant bacterial strains and their interaction with proteins.Ann. Transl. Med.2020849210.21037/atm.2019.12.100 32175385
    [Google Scholar]
  78. IsmaielA.A. RabieG.H. Abd El-AalM.A. Antimicrobial and morphogenic effects of emodin produced by Aspergillus awamori WAIR120.Biologia (Bratisl.)201671546447410.1515/biolog‑2016‑0067
    [Google Scholar]
  79. ZhouJ. BiS. ChenH. Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa.Front. Microbiol.2017876910.3389/fmicb.2017.00769 28515715
    [Google Scholar]
  80. ĐukanovićS. GanićT. LončarevićB. Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms.J. Appl. Microbiol.202213231840185510.1111/jam.15360 34779074
    [Google Scholar]
  81. LuF. WuX. HuH. Emodin Combined with Multiple-Low-Frequency, Low-Intensity Ultrasound To Relieve Osteomyelitis through Sonoantimicrobial Chemotherapy.Microbiol. Spectr.2022105e00544e2210.1128/spectrum.00544‑22 36069576
    [Google Scholar]
  82. May ZinW.W. ButtachonS. DethoupT. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006.Phytochemistry2017141869710.1016/j.phytochem.2017.05.015 28586721
    [Google Scholar]
  83. PourhajibagherM. BahadorA. Aptamer decorated emodin nanoparticles-assisted delivery of dermcidin-derived peptide DCD-1L: Photoactive bio-theragnostic agent for Enterococcus faecalis biofilm destruction.Photodiagn. Photodyn. Ther.20223910302010.1016/j.pdpdt.2022.103020 35850461
    [Google Scholar]
  84. PapadopoulouA. DalsgaardI. WiklundT. Inhibition activity of compounds and bacteriophages against Flavobacterium psychrophilum biofilms in vitro.J. Aquat. Anim. Health201931322523810.1002/aah.10069 31216387
    [Google Scholar]
  85. CasciaroB. GhirgaF. CappielloF. The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria.Antibiotics (Basel)20221118410.3390/antibiotics11010084 35052961
    [Google Scholar]
  86. WangW.L. HsuY.M. LinM.L. Ex Vivo Model to Evaluate the Antibacterial and Anti-Inflammatory Effects of Gelatin–Tricalcium Phosphate Composite Incorporated with Emodin and Lumbrokinase for Bone Regeneration.Bioengineering (Basel)202310890610.3390/bioengineering10080906 37627791
    [Google Scholar]
  87. MirhashemiA.H. PourhajibagherM. ZebardastB. BahramiR. Kharazi FardM.J. In vitro effects of antimicrobial properties and shear bond strength of different concentrations of Emodin nanoparticles incorporated orthodontic composites.Int. Orthod.202422110083610.1016/j.ortho.2023.100836 38134823
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265329198241105030008
Loading
/content/journals/iddt/10.2174/0118715265329198241105030008
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anthraquinones; Biofilms; biological products; emodin; infections; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test