Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Background

Microorganisms associated with sea sponges have proven to be good natural product resources that are biologically active and pharmaceutically important.

Objective

This research aimed to identify actinomycetes related to a sponge from Barranglompo Island Makassar and the antibacterial compounds.

Methods

Identification of actinomycetes was based on molecular characterization of sequence gen16S rRNA. The antibacterial compound was separated using vacuum liquid chromatography and preparative Thin Layer Chromatography (TLC). The structure determination was done based on spectroscopy 1H-NMR, 13C-NMR, 2D NMR, and mass spectra.

Results

Molecular characterization showed that actinomycetes strain BLP 20 had the closest relationship with Streptomyces parvulus and Uncultured sp. with a similarity value of 83%. The results obtained from the characterization of antibacterial compounds based on spectroscopic data indicate that these compounds lead to Actinomycin D.

Conclusion

Characterization and identification of Strain 20 / BLP by molecular phylogenetic analysis of 16S rRNA sequences revealed the closest relationship with Uncultured sp and with a similarity value of 83%, which indicated a new species. The structure of the active compound isolated from actinomycetes strain 20 / BLP leads to Actinomycin D.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265306848240719061135
2024-08-26
2025-09-02
Loading full text...

Full text loading...

References

  1. PielJ. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals.Curr. Med. Chem.2006131395010.2174/092986706775197944 16457638
    [Google Scholar]
  2. HentschelU. UsherK.M. TaylorM.W. Marine sponges as microbial fermenters.FEMS Microbiol. Ecol.200655216717710.1111/j.1574‑6941.2005.00046.x 16420625
    [Google Scholar]
  3. HardoimC.C.P. CostaR. AraújoF.V. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.Appl. Environ. Microbiol.200975103331334310.1128/AEM.02101‑08 19304829
    [Google Scholar]
  4. Van SoestR.W.M. Boury-EsnaultN. VaceletJ. Global diversity of sponges (Porifera).PLoS One201274e3510510.1371/journal.pone.0035105 22558119
    [Google Scholar]
  5. RanteH. ManggauM.A. AlamG. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia.Biodiversitas202425210.13057/biodiv/d250203
    [Google Scholar]
  6. BluntJ.W. CoppB.R. KeyzersR.A. MunroM.H.G. PrinsepM.R. Marine natural products.Nat. Prod. Rep.201330223732310.1039/C2NP20112G 23263727
    [Google Scholar]
  7. AbdelmohsenU.R. SzesnyM. OthmanE.M. Antioxidant and anti-protease activities of diazepinomicin from the sponge-associated Micromonospora strain RV115.Mar. Drugs201210102208222110.3390/md10102208 23170078
    [Google Scholar]
  8. StienD. Marine microbial diversity as a source of bioactive natural products.Mar. Drugs202018421510.3390/md18040215 32316094
    [Google Scholar]
  9. GandhimathiR. ArunkumarM. SelvinJ. Antimicrobial potential of sponge associated marine actinomycetes.J. Mycol. Med.2008181162210.1016/j.mycmed.2007.11.001
    [Google Scholar]
  10. ZhangW. LiZ. MiaoX. ZhangF. The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China sea sponges.Mar. Biotechnol.200911334635510.1007/s10126‑008‑9148‑z 18853226
    [Google Scholar]
  11. AtlasR. Principle of Microbiology.United StatesWmc.Brown Publisher1997
    [Google Scholar]
  12. MooreB.S. TrischmanJ.A. SengD. KhoD. JensenP.R. FenicalW. Salinamides, antiinflammatory depsipeptides from a marine streptomycete.J. Org. Chem.19996441145115010.1021/jo9814391
    [Google Scholar]
  13. MustafaO. A UT, Cem A. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey.Afr. J. Biotechnol.20043944144610.5897/AJB2004.000‑2087
    [Google Scholar]
  14. MargaveyN.A. KellerJ.M. BernanV. DworkinM. ShermanD.H. Isolation and characterization of novel marine-derived Actinomycete Taxa rich in bioactive metabolite.Appl. Envi. Microbiol.2004701275207529
    [Google Scholar]
  15. JensenP.R. WilliamsP.G. Species-specific secondary metabolite production in marine actinomycetes of the Genus Salinispora.Appl. Envi. Microbiol.200773411461152
    [Google Scholar]
  16. LeeJ.Y. HwangB.K. Diversity of antifungal actinomycetes in various vegetative soils of Korea.Can. J. Microbiol.200248540741710.1139/w02‑025 12109880
    [Google Scholar]
  17. XuL. LiQ. JiangC. Diversity of soil actinomycetes in Yunnan, China.Appl. Environ. Microbiol.199662124424810.1128/aem.62.1.244‑248.1996 16535212
    [Google Scholar]
  18. BadjiB. ZitouniA. MathieuF. LebrihiA. SabaouN. Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil.Can. J. Microbiol.200652437338210.1139/w05‑132 16699588
    [Google Scholar]
  19. NishimuraT. MeguroA. HasegawaS. NakagawaY. ShimizuM. KunohH. An endophytic actinomycete, Streptomyces sp. AOK-30, isolated from Mountain Laurel and its antifungal activity.J. Gen. Plant Pathol.200268439039710.1007/PL00013109
    [Google Scholar]
  20. TakizawaM. ColwellR.R. HillR.T. Isolation and diversity of actinomycetes in the chesapeake bay.Appl. Environ. Microbiol.1993594997100210.1128/aem.59.4.997‑1002.1993 16348922
    [Google Scholar]
  21. TiwariK. GuptaR.K. Rare actinomycetes: A potential storehouse for novel antibiotics.Crit. Rev. Biotechnol.201232210813210.3109/07388551.2011.562482 21619453
    [Google Scholar]
  22. RanteH. Purification and characterization of anti-multidrug resistances bacteria from actinomycetes associated sponge.Majalah Farmasi Indonesia2010213158165
    [Google Scholar]
  23. SongJ. LeeS.C. KangJ.W. BaekH.J. SuhJ.W. Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S–23S rDNA internally transcribed spacer sequences.Int. J. Syst. Evol. Microbiol.200454120320910.1099/ijs.0.02624‑0 14742481
    [Google Scholar]
  24. AusubelF.M. Short Protocol in Molecular Biology: A Compendium of Methods from Current Protocol in Molecular Biology.4th edHoboken, New JerseyWiley1995
    [Google Scholar]
  25. SambrookJ. FritschE.F. ManiatisT. Moleculer Cloning.2nd edNew York, United StatesCold Spring Harbor Laboratory Press1989
    [Google Scholar]
  26. AyuosoA. ClarkD. GonzalesI. SalazarO. A novel actinomycetes strain de-replication approach based on te diversity of polyketide synthase and nonribosomal peptide synthetase biosynthesic pathways.Gen Mol Biotech200567795806
    [Google Scholar]
  27. ThompsonJ.D. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res.1997252448764882
    [Google Scholar]
  28. FelsensteinJ. Phylogeny inference package version 3,5.c, distributed by the author department of Genetic, University of Washington.2005Available From: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=89604
  29. LiQ ChenX JiangY JiangC Morphological identification of actinobacteria.Actinobacteria - Basics and Biotechnological Applications.London: InTechOpen201610.5772/61461
    [Google Scholar]
  30. KifsterE. Outline of A comparative study of criteria used in characterization of the actinomycetes.Inter Bull Bacteriological Nomen Tax19599297104
    [Google Scholar]
  31. Forar LaidiR. SifourM. SakrM. HaceneH. A new actinomycete strain SK4-6 producing secondary metabolite effective against methicillin-resistant Staphylococcus aureus.World J. Microbiol. Biotechnol.200824102235224110.1007/s11274‑008‑9735‑1
    [Google Scholar]
  32. StackebrandtE. GoebelB.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.Int. J. Syst. Evol. Microbiol.199444484684910.1099/00207713‑44‑4‑846
    [Google Scholar]
  33. SilversteinR.M. WebsterF.X. KiemleD.J. Spectrometric Identification of Organic Compound.Hoboken, New JerseyWiley2005
    [Google Scholar]
  34. YuC. TsengY.Y. NMR study of the solution conformation of actinomycin D.Eur. J. Biochem.1992209118118710.1111/j.1432‑1033.1992.tb17275.x 1396698
    [Google Scholar]
  35. ZhangZ. LiY. SunY. WangW. SongX. ZhangD. Chemical diversity and biological activities of marine-derived sulphur containing alkaloids: A comprehensive update.Arab. J. Chem.202316910501110.1016/j.arabjc.2023.105011
    [Google Scholar]
  36. JiangT. PuH. DuanY. YanX. HuangY. New natural products of Streptomyces sourced from deep-sea, desert, volcanic, and polar regions from 2009 to 2020 Chinese.Youji Huaxue2021411804182010.6023/cjoc202010004
    [Google Scholar]
  37. FreelK.C. EdlundA. JensenP.R. Microdiversity and evidence for high dispersal rates in the marine actinomycete ‘ Salinispora pacifica ’.Environ. Microbiol.201214248049310.1111/j.1462‑2920.2011.02641.x 22117917
    [Google Scholar]
  38. WaturangiD.E. HariyantoJ.P. LoisW. HutagalungR.A. HwangJ.K. Inhibition of marine biofouling by aquatic actinobacteria and coral-associated marine bacteria.Malays. J. Microbiol.201713929910.21161/mjm.86016
    [Google Scholar]
  39. RameshS. MathivananN. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes.World J. Microbiol. Biotechnol.200925122103211110.1007/s11274‑009‑0113‑4
    [Google Scholar]
  40. WuZ. XieL. XiaG. A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of puffer fish Fugu rubripes.Toxicon200545785185910.1016/j.toxicon.2005.02.005 15904680
    [Google Scholar]
  41. GhanemN.B. SabryS.A. El-SherifZ.M. Abu El-ElaG.A. Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria.J. Gen. Appl. Microbiol.200046310511110.2323/jgam.46.105 12483583
    [Google Scholar]
  42. HuangX. KongF. ZhouS. HuangD. ZhengJ. ZhuW. Streptomyces tirandamycinicus sp. nov., a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae.Front. Microbiol.20191048210.3389/fmicb.2019.00482 30918502
    [Google Scholar]
  43. WaksmanS.A. WoodruffH.B. Bacteriostatic and bactericidal substances produced by a soil actinomyces.Exp. Biol. Med. (Maywood)194045260961410.3181/00379727‑45‑11768
    [Google Scholar]
  44. KatzE. Actinomycin.ChamSpringer1967276341
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265306848240719061135
Loading
/content/journals/iddt/10.2174/0118715265306848240719061135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test