Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

In recent years, there has been an increasing demand for metal microstructural devices in fields such as biomedicine, aerospace, and precision machinery. The final step in the processing of microcomponents is the polishing process, which aims to eliminate surface defects and ensure stable mechanical performance of the structural components.

Objective

By analyzing and discussing recent patents related to microstructure surface polishing, valuable insights can be gained, and future research prospects can be provided.

Methods

Through a comprehensive study of various patents concerning polishing techniques, this paper aims to summarize the advancements made in microstructure surface polishing technology.

Results

With the increasing demand for the application of microstructure devices, microstructure polishing technology has become more and more important. Microstructure polishing technology can effectively improve the quality of microstructure devices and ensure the high quality and efficiency of the products.

Conclusion

By elucidating the characteristics of polishing and emphasizing the significance of microstructure surface polishing, it is concluded that ultra-precision polishing and nano-polishing represent key directions for future development in this field.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121308687240815053640
2024-08-22
2025-12-16
Loading full text...

Full text loading...

References

  1. YangL. WeiJ. MaZ. SongP. MaJ. ZhaoY. HuangZ. ZhangM. YangF. WangX. The fabrication of micro/nano structures by laser machining.Nanomaterials2019912178910.3390/nano912178931888222
    [Google Scholar]
  2. MiaoD. GuoX. ShuaiZ. Finite element simulation analysis of 3d micro-milling based on ABAQUS.Machine Tool & Hydraulics2021498172175
    [Google Scholar]
  3. YIJ. Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary.Int. J. Adv. Manuf. Technol.2020106728752892
    [Google Scholar]
  4. ZhangC. XuS. Research on micro-electrochemical machining of swirl chamber for fuel nozzle of an aero engine.Machine Tool & Hydraulics20164476668
    [Google Scholar]
  5. ZhangW. DongC. MaS. Simulation of surface hardening in micro milling of GH4169 alloy.Machine Tool & Hydraulics20194721151154
    [Google Scholar]
  6. WangL. ChangY. Discussion on the present situation and future of mechanical manufacturing technology in China.Enterprise Review201301122
    [Google Scholar]
  7. HuangQ. WeiZ. ZhangR. Modern machinery manufacturing technology and precision machining technology.STIA20131733
    [Google Scholar]
  8. ZhihuaZ.H.A.N.G. Analysis of ultra-precision micromachinery manufacturing technology.STIA201528145
    [Google Scholar]
  9. GuanmingW.A.N.G. Analysis on research progress of ultra-precision micromachinery manufacturing technology.China Equipment Engineering202111257258
    [Google Scholar]
  10. JiaM. HongL. Research on ultra-precision micromachinery manufacturing technology.Rubber & Plastics Technology & Equipment20164222441
    [Google Scholar]
  11. ZhiC. Effective application of precision ultra-precision machining technology in micromachinery manufacturing.Henan Science and Technology2016238586
    [Google Scholar]
  12. TaoYUE Research on manufacturing technology of ultra-precision micromachinery.Sci. Technol. Wind2019168
    [Google Scholar]
  13. HuiY. Application of precision ultra-precision machining technology in micromachinery manufacturing.APMT20060114
    [Google Scholar]
  14. YuH. Research progress of ultra-precision micromachinery manufacturing Technology.J. Changchun Univ. Sci. Technol.20080318
    [Google Scholar]
  15. KV. MathewJ. VIPINDAS K Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al-4V and analysis of surface roughness.Wear2019424-42516518210.1016/j.wear.2019.02.018
    [Google Scholar]
  16. SHIZY. Determination of minimum uncut chip thickness during micro-end milling Inconel 718 with acoustic emission signals and FEM simulation.Int. J. Adv. Manuf. Technol.20189813745
    [Google Scholar]
  17. MengL. ZengY. ZhuD. Wire electrochemical micromachining of Ni-based metallic glass using bipolar nanosecond pulses.Int. J. Mach. Tools Manuf.201914610343910.1016/j.ijmachtools.2019.103439
    [Google Scholar]
  18. GangC. QiangX. Research progress on polishing process of single crystal Sapphire substrate.Tool Technology201852339
    [Google Scholar]
  19. ZhuY. LiX. WangZ. Prediction of subsurface damage in consolidated abrasive grinding of optical hard and brittle materials.Opt. Precis. Eng.201725236737410.3788/OPE.20172502.0367
    [Google Scholar]
  20. MaX. GaoG. BoZ. Progress of precision micro-hole machining technology.Edm & D2008051318
    [Google Scholar]
  21. BiJ. LiJ. Abrasive flow machining technology and application.Eng. Des. Appl. Res.200135
    [Google Scholar]
  22. TanP. Research on inertial navigation technology introduction and application development.Sci. Technol. Vis.201612151172
    [Google Scholar]
  23. WenquanJ. Analysis on the application and development of inertial navigation Technology.China Equipment Engineering201920153154
    [Google Scholar]
  24. WangZ. Micro Machining Technology.BeijingNational Defense Industry Press2005
    [Google Scholar]
  25. YuanW. MaB. Micromachinery and Micro-machining TechnologyXi 'an: Northwestern Polytechnical University Press2000
    [Google Scholar]
  26. JulongY.U.A.N. ZhangF. DaiY. Research on the development of science and technology in ultra-precision machining.Jixie Gongcheng Xuebao2010461516117710.3901/JME.2010.15.161
    [Google Scholar]
  27. XUEJX. Grinding technology for engineering ceramics-a review.Adv. Mat. Res.20137643136
    [Google Scholar]
  28. BrehlD.E. DowT.A. Review of vibration-assisted machining.Precis. Eng.200832315317210.1016/j.precisioneng.2007.08.003
    [Google Scholar]
  29. LuoQ. JingL. XuX. Research progress of ultra-precision polishing technology for sapphire substrate.Superhard Materials Engineering20172914751
    [Google Scholar]
  30. XUY. Study on high efficient sapphire wafer processing by coupling SG-mechanical polishing and GLA-CMP.Int. J. Mach. Tools Manuf.20181301219
    [Google Scholar]
  31. LiangS. TangW. XiangJ. Effect of modified polish on polishing quality of optical glass.Chin. J. Lasers20174412130136
    [Google Scholar]
  32. J. Deng, J. Pan, and Q. Zhang, "Research progress in chemicalmechanical polishing of single crystal SiC substrate", DATE, vol. 40, no. 01, pp. 79-91, 2020.10.13394/j.cnki.jgszz.2020.1.0013
    [Google Scholar]
  33. SiL. YuZ. Development and application of chemical-mechanical polishing technology.SEEI2019480516
    [Google Scholar]
  34. DengJ. PanJ. ZhangQ. Research progress in chemical-mechanical polishing of single crystal SiC substrate.DATE202040017991
    [Google Scholar]
  35. Dai Wei Zheng Zhizhen Li Jianjun Huang Qiwen Liu Jia Research progress in laser polishing of metal surface.Jiguang Yu Guangdianzixue Jinzhan2015521111000110.3788/LOP52.110001
    [Google Scholar]
  36. LiuE.J. JieX. XiC. Research progress and development trend of laser polishing technology.Chin. J. Lasers20235016100118
    [Google Scholar]
  37. XuY. ShaoJ. YingL. Research progress in laser surface polishing of hard and brittle materials.Jiguang Yu Guangdianzixue Jinzhan202259133239
    [Google Scholar]
  38. ChenB. SunS. QianW. Research progress of laser polishing technology for material surface.China Surface Engineering202134067489
    [Google Scholar]
  39. YangS. WangH. QiangW. Research and application of laser fine surface manufacturing process: Cleaning and polishing.Aeronautical Manufacturing Technology201861207886
    [Google Scholar]
  40. FengZ. YuJ. Magnetorheological finishing technology.Optics and Precision Engineering19997518
    [Google Scholar]
  41. DaiL. ZhangZ. QiaoG. Research progress of Magnetorheological polishing technology.MD&M202403254260
    [Google Scholar]
  42. ShenJ. YuanG. PanY. Magnetorheological polishing technology based on curved permanent Magnet.J. Changchun Univ. Technol.20234404360367
    [Google Scholar]
  43. YinS. XuZ. ChenF. Small aperture aspherical surface oblique axis magnetorheological polishing technology.Jixie Gongcheng Xuebao20134917333810.3901/JME.2013.17.033
    [Google Scholar]
  44. PanJ. PengY. YanQ. Experimental study on Polishing force characteristics of polishing pad with magnetorheological effect of dynamic magnetic field.Chin. J. Mech. Eng.20185406101710.3901/JME.2018.06.010
    [Google Scholar]
  45. AroraK. SinghA.K. Magnetorheological finishing of UHMWPE acetabular cup surface and its performance analysis.Mater. Manuf. Process.202035141631164910.1080/10426914.2020.1784928
    [Google Scholar]
  46. SirwalS.A. SinghA.K. PaswanS.K. Experimental analysis of magnetorheological finishing of blind hole surfaces using permanent magnet designedtools.J. Braz. Soc. Mech. Sci. Eng.2020422104115
    [Google Scholar]
  47. KumarA. AlamZ. KhanD.A. JhaS. Nanofinishing of FDM-fabricated components using ball end magnetorheological finishing process.Mater. Manuf. Process.201934223224210.1080/10426914.2018.1512136
    [Google Scholar]
  48. ZafarA. FaizI. SivasankarG. Nanofinishing of 3Dsurfaces by automated five-axis CNC ball end magnetorheological finishing machine using customized controller.Int. J. Adv. Manuf. Technol.20191005/810311042
    [Google Scholar]
  49. SinghM. SinghA.K. Improved magnetorheological finishing process with rectangular core tip for external cylindrical surfaces.Mater. Manuf. Process.20193491049106110.1080/10426914.2019.1594272
    [Google Scholar]
  50. KanthaleV.S. PandeD.W. Experimental characterization of surface roughness using magnetorheological abrasive flow finishing process on AISI D3 steel.J. Bio Tribocorros.2019536210.1007/s40735‑019‑0254‑4
    [Google Scholar]
  51. ZhaiK. HeQ. LiL. RenY. Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted.Ultrasonics20178091410.1016/j.ultras.2017.04.00528494230
    [Google Scholar]
  52. WaT. DengW. LiR. Correction of removal function for highly steep off-axis aspherical surface polishing by ion beam.Opt. Precis. Eng.20152361572157910.3788/OPE.20152306.1572
    [Google Scholar]
  53. GhigoM. CanestrariR. SpigaD. NoviA. Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring.Proc. SPIE200766711410.1117/12.734273
    [Google Scholar]
  54. TangW. Study on removing model and process of large aperture aspherical surface by ion beam polishing.University of Chinese Academy of Sciences2016
    [Google Scholar]
  55. YifanD.A.I. LinZ.H.O.U. XuhuiX.I.E. Ion Beam modification technique.J. Appl. Opt.2011324753760
    [Google Scholar]
  56. ChenP. Research on aspherical ion beam modification technology Xi 'an Polytechnic University2022
    [Google Scholar]
  57. X. Wang, X-K. Li, and Y-X. Tan, "Research progress in ion beam polishing", MTMT, no. 10, pp. 28-31, 2019.10.1021/acsnano.3c07896
    [Google Scholar]
  58. MengX. WangY. LiW. Research on ion beam polishing of aspherical Optical Elements of space Camera.Aerospace Manufacturing Technology2016062731
    [Google Scholar]
  59. SongP. HuangW. YinW. High efficiency driving of linear motor based on piezoelectric actuator.Optics and Precision Engineering201119102464247110.3788/OPE.20111910.2464
    [Google Scholar]
  60. WangY HuangWQ Linear ultrasonic motor using longitudinal vibration.Trans. Nanjing Univ. Aeronaut. Astronaut.20122914045
    [Google Scholar]
  61. XuW-X. ZhangL-C. Ultrasonic vibration-assisted machining: Principle, design and application.Advances in Manufacturing20153317319210.1007/s40436‑015‑0115‑4
    [Google Scholar]
  62. AnD. YangM. ZhuangX. YangT. MengF. DongZ. Dual traveling wave rotary ultrasonic motor with single active vibrator.Appl. Phys. Lett.20171101414350710.1063/1.4979699
    [Google Scholar]
  63. FeiD. Research on Key technology of Fine neck grinding of flexible joint based on force feedback.Harbin Institute of Technology2016
    [Google Scholar]
  64. LiW. PengZ. LiuG. Research on grinding technology of flexible joint based on force feedback.APMT201652031720
    [Google Scholar]
  65. BoWang FeiDing PengZhang An integrated device for Fine neck Grinding and Measuring of Flexible Joint based on Force feedback.C.N. Patent 105269449B2017
    [Google Scholar]
  66. MinFan LiuHaitao LinXiaodong A kind of tool for repairing precision thin-wall step parts.C.N. Patent 203611086U2014
    [Google Scholar]
  67. LiangYingchun BoWang WangShilei Thin wall microstructure parts polishing device.C.N. Patent 1012146262008
    [Google Scholar]
  68. XingMao. Design and process research of thin-walled microstructure polishing system.Harbin Institute of Technology2012
    [Google Scholar]
  69. WangS. Research on Key Technology of Thin Wall Microstructure polishing device.Harbin Institute of Technology2011
    [Google Scholar]
  70. ChenZ. YunF. ZhaoB. Research on ultra-precision grinding and polishing technology of thin-walled micro three-dimensional structural parts.APMT201450051013
    [Google Scholar]
  71. ChenZuhui YunFan ZhengXiaohong An ultra-precision surface finishing method with Micro-groove structure.C.N. Patent 104708518A2015
    [Google Scholar]
  72. ChenMingjun LiuHenan LinYu A vertical axis rotary table upside-down inclined axis Magnetorheological polishing device.C.N. Patent 102990500B2014
    [Google Scholar]
  73. BoZhong ChenXianhua JiangWenzhong A method and device for fluid dynamic pressure polishing.C.N. Patent 107175559A2017
    [Google Scholar]
  74. ZhuHongtao WangGuoning KunZhang A Microstress abrasive Fluid polishing method for thin wall micro-holes.C.N. Patent 113084693A2021
    [Google Scholar]
  75. DingJ. Research on Fluid grinding and polishing Technology of Micro blind Hole Dynamic pressure Abrasive.Shandong University2021
    [Google Scholar]
  76. JianhuaD.I.N.G. ZhuH. WangM. Simulation study on machining area of micro-blind hole dynamic pressure abrasive fluid polishing.Tool Technology202054112631
    [Google Scholar]
  77. BoWang LaiZhifeng PengZhang A method for removing electric corrosion layer at the bottom of thin bar of flexible joint.C.N. Patent 104802044B2017
    [Google Scholar]
  78. JunfengXIAO NiuMuyuan QiangWang A Magnetorheological polishing device and method based on flow field focusing.C.N. Patent CN110340736B2021
    [Google Scholar]
  79. YansongLIU HeZhibing GuoChen Hollow microsphere surface polishing device and method.C.N. Patent 110142684A2019
    [Google Scholar]
  80. JunZHAO RuiWang HuangJinfeng Cavitation assisted Microhemispherical cavity array polishing method under high temperature and pressure.C.N. Patent 110355619A2019
    [Google Scholar]
  81. HuangShuiquan HuangFaxing HanHuang Photochemical mechanical grinding method and photosensitive active grinding fluid.C.N. Patent 116038551A2023
    [Google Scholar]
  82. XiaYilong LiQiuyue DongWei A kind of chemical mechanical polishing machine for polishing ball head workpiece.C.N. Patent 216098264U2022
    [Google Scholar]
  83. LimingWANG JinMingsheng ZhuDongjie Hierarchical polishing device based on compound gradient elastic tool.C.N. Patent 210818966U2020
    [Google Scholar]
  84. ZhaiWenjie Triboelectrochemical research and polishing method of hard and brittle Materials.C.N. Patent 16702652005
    [Google Scholar]
  85. BochangLI YanLiu YangXuefeng Chemical mechanical polishing method of Gallium oxide wafer based on photocatalysis.C.N. Patent 116435189A2023
    [Google Scholar]
  86. YangXiaozhe XuYang JiangZhuangde A method, device and equipment for electrochemical mechanical polishing with electrolyte fixation.C.N. Patent 116442014A2023
    [Google Scholar]
  87. MingJi GeJiangqin TanYunfeng An ultrasonic polishing device using gas-liquid-solid three-phase abrasive flow.C.N. Patent 104786157B2018
    [Google Scholar]
  88. HuangQitai A non-contact ultrasonic wave surface shape polishing method and device.C.N. Patent 102441820B2013
    [Google Scholar]
  89. FuHaiying LiPengyuan GengShaofei Method and device for ion beam polishing of High temperature superconducting Hastelloy base band surface.C.N. Patent 115157016A2022
    [Google Scholar]
  90. YeTian FengShi XieLingbo A controlled pulsed ion beam modification method based on frequency domain parameter adjustment.C.N. Patent 114724908A2022
    [Google Scholar]
  91. ZhiHuang XingYang JieMin A kind of ion beam polishing processing system for optical components.C.N. Patent 113752097A2021
    [Google Scholar]
  92. XinyinJIA JianSun HaoXiongbo Film layer ion beam polishing device for sagnac interferometer assembly.C.N. Patent 212351342U2021
    [Google Scholar]
  93. PingLi DuanHuigao WangZhaolong A kind of ion beam polishing method for fabricating micro-nano step array structure.C.N. Patent 111421390B2021
    [Google Scholar]
  94. FangF. ZhangN. GuoD. EhmannK. CheungB. LiuK. YamamuraK. Towards atomic and close-to-atomic scale manufacturing.Int. J. Extreme Manuf.20191101200110.1088/2631‑7990/ab0dfc
    [Google Scholar]
  95. ZhangZ. YanJ. KuriyagawaT. Manufacturing technologies toward extreme precision.Int. J. Extreme Manuf.20191202200110.1088/2631‑7990/ab1ff1
    [Google Scholar]
  96. GuobiaoW.A.N.G. LaiY. LuB. Summary of the major research project “Basic Research of nanomanufacturing”.Science Foundation of China2019333261274
    [Google Scholar]
  97. Feng-zhouF.A.N.G. Atomic and close-to-atomic scale manufacturing: Perspectives and measures.Int. J. Extreme Manuf.202023518
    [Google Scholar]
  98. FangF. Atomic and near-atomic scale manufacturing: Development trend of manufacturing technology.Zhongguo Jixie Gongcheng202031910091021
    [Google Scholar]
  99. JianG.A.O. Xi-chunL.U.O. Feng-zhouF.A.N.G. Fundamentals of atomic and close-to-atomic scale manufacturing: A review.Int. J. Extreme Manuf.20224101200110.1088/2631‑7990/acfc03
    [Google Scholar]
  100. HouX. LiJ. LiY. TianY. Intermolecular and surface forces in atomic-scale manufacturing.Int. J. Extreme Manuf.20224202200210.1088/2631‑7990/ac5e13
    [Google Scholar]
/content/journals/eng/10.2174/0118722121308687240815053640
Loading
/content/journals/eng/10.2174/0118722121308687240815053640
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test