Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

The nozzle is one of the parts of a 3D printer that cannot be missed because of its widespread popularity in recent years. The nozzle's structure determines the quality of the printed product; therefore, selecting a suitable nozzle structure is crucial.

With the advancement of 3D printing technology in recent years, 3D printers have progressively come under investigation. Examining the design of the nozzle, feeding mechanism, and printing platform can help to increase the quality of the prints. The design and enhancement of the nozzle structure are beneficial to the advancement of 3D printing technology since it is one of the key elements influencing print quality.

Using the research methods, research content, and invention structure of the most recent representative patents on this nozzle structure, the features and operating principle of the 3D printed nozzle structure are illustrated.

To classify and examine the nozzle temperature and nozzle clogging that impact the nozzles, a patent analysis of various types of 3D printing nozzle structures is carried out. Future trends in 3D printing nozzle structures are also covered.

The issues caused by nozzle work can be resolved to increase product quality and precision by comparing various 3D printing nozzle structures. This will also lead to the invention of more relevant patents in the future, including those about printing numerous nozzles and high-strength metals.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121292028240323195759
2024-04-04
2025-12-17
Loading full text...

Full text loading...

References

  1. ThakarC.M. ParkheS.S. JainA. PhasinamK. MurugesanG. VentayenR.J.M. 3D Printing: Basic principles and applications.Mater. Today Proc.20225184284910.1016/j.matpr.2021.06.272
    [Google Scholar]
  2. KarakurtI. LinL. 3D printing technologies: Techniques, materials, and post-processing.Curr. Opin. Chem. Eng.20202813414310.1016/j.coche.2020.04.001
    [Google Scholar]
  3. ParsonsM. McGuireT. HirschM. LeakeS. StraubJ. Enablement of defense missions with in-space 3d printing.Conference on Sensors and Systems for Space Applications IXBaltimore, US, 2016, vol.9838.
    [Google Scholar]
  4. BoyajianM.K. CrozierJ.W. WooA.S. Introduction of medical three-dimensional printing in rhode island.R.I. Med. J.20191026151831398962
    [Google Scholar]
  5. StickelO. AalK. FuchsbergerV. 3D printing/digital fabrication for education and the common good workshop at the international conference on communities.International Conference on Communities and TechnologiesTroyes, 2017, pp.315-318.
    [Google Scholar]
  6. AnagnostopoulosS. GallosP. ZouliasE. FotosN. MantasJ. 3D digital printing in healthcare: Technologies, applications and health issues.Stud. Health Technol. Inform.202229539439710.3233/SHTI22074835773894
    [Google Scholar]
  7. AquinoR.P. BarileS. GrassoA. SavianoM. Envisioning smart and sustainable healthcare: 3D Printing technologies for personalized medication.Futures2018103355010.1016/j.futures.2018.03.002
    [Google Scholar]
  8. TiwariD. VobilisettyR.K. HeerB. Current application and future prospects of 3D printing in otorhinolaryngology: A narrative review.Indian J. Otolaryngol. Head Neck Surg.202274112312610.1007/s12070‑021‑02634‑535070934
    [Google Scholar]
  9. TrenfieldS.J. AwadA. MadlaC.M. HattonG.B. FirthJ. GoyanesA. GaisfordS. BasitA.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare.Expert Opin. Drug Deliv.201916101081109410.1080/17425247.2019.166031831478752
    [Google Scholar]
  10. LiY.H. ZhouX.C. The application of 3D printing technology in the field of science and technology and art in the future.R. I. Med. J.20191021518
    [Google Scholar]
  11. SaggiomoV. A 3D printer in the lab: Not only a toy.Adv. Sci.2022927220261010.1002/advs.20220261035831252
    [Google Scholar]
  12. ParkS-W. JungM-W. SonY-U. KangT-Y. LeeC. Development of multi-material DLP 3D printer.J. Korean Soc. Manufac. Techno. Eng.201726110010710.7735/ksmte.2017.26.1.100
    [Google Scholar]
  13. LeeD. JangJ. Kwan-BaeK. A study on the development of 3D printer and design trend.J. Indus. Des. Stud.201726100107
    [Google Scholar]
  14. LiC. ChengW. HuJ. Nozzle problem analysis and optimization of fdm 3d printer.International conference on mechatronics, computer and education informationizationShenyang, China, 2017, pp.270-273.10.2991/mcei‑17.2017.59
    [Google Scholar]
  15. JungM.H. KongJ-R. KimH.J. Dimensional characteristics of 3D printing by FDM and DLP output methods.J. Korean Soc. Manufac. Proc. Eng.2021201667310.14775/ksmpe.2021.20.01.066
    [Google Scholar]
  16. KimS. ParkH.D. ChungE. Evaluation for volatile organic compounds (VOCs) emitted from fused deposition modeling (FDM) 3D printing filaments.Korean Soc. Occup. Environ. Hyg.202232153162
    [Google Scholar]
  17. ChoiN. Optimized environment parameters from dimensional accuracy for FDM-type 3D printing system.J. Korean Inst. Indus. Eng.201844191710.7232/JKIIE.2018.44.1.009
    [Google Scholar]
  18. HuY. W. LadaniR. B. BrandtM. LiY. Z. MouritzA. P. Carbon fiber damage during 3D printing of polymer matrix laminates using the FDM process.Korean Inst. Indus. Eng.2021205
    [Google Scholar]
  19. BardotM. SchulzM.D. Biodegradable poly(lactic acid) nanocomposites for fused deposition modeling 3D printing.Nanomaterials20201012256710.3390/nano1012256733371307
    [Google Scholar]
  20. JingS.L. Study on the accuracy of FDM-type 3D printer part production.Mach. Manag. Devel.2023382428
    [Google Scholar]
  21. KafleA. LuisE. SilwalR. PanH.M. ShresthaP.L. BastolaA.K. 3D/4D printing of polymers: Fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA).Polymers20211318310110.3390/polym1318310134578002
    [Google Scholar]
  22. ZhangD. LiuX. QiuJ. 3D printing of glass by additive manufacturing techniques: A review.Front Optoelectron.202114326327710.1007/s12200‑020‑1009‑z36637727
    [Google Scholar]
  23. TrenfieldS.J. JanuskaiteP. GoyanesA. WilsdonD. RowlandM. GaisfordS. BasitA.W. Prediction of solid-state form of SLS 3D printed medicines using NIR and raman spectroscopy.Pharmaceutics202214358910.3390/pharmaceutics1403058935335965
    [Google Scholar]
  24. GuoS. LiuJ. ZhangL. LiY.C. Preparation of high-porosity biomass-based carbon electrodes by selective laser sintering.Mater. Lett.2022330133300
    [Google Scholar]
  25. Yi-WuJ. HsiehC.H. LinZ.Y. Novel high-speed 3D printing method using selective oil sintering with thermoplastic polyurethane powder printing.Intern. J. Bioprint.20228252110.18063/ijb.v8i2.52135669330
    [Google Scholar]
  26. DengW. XieD. LiuF. ShenL. TianZ. YangY. Preparation and properties of functional materials based on digital light processing 3D printing.J. Nanomat.2022202210.1155/2022/4136072
    [Google Scholar]
  27. WuD. ZhaoZ. ZhangQ. QiH.J. FangD. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing.Soft Matter201915306151615910.1039/C9SM00725C31317163
    [Google Scholar]
  28. MazzantiV. MalaguttiL. MollicaF. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties.Polymers2019117109410.3390/polym1107109431261607
    [Google Scholar]
  29. MelnikovaR. EhrmannA. FinsterbuschK. 3D printing of textile-based structures by fused deposition modelling (FDM) with different.Polymers 201911012018
    [Google Scholar]
  30. LeiteR. VenturaR. BotoJ. FrutuosoN. 3D printing of large parts using multiple collaborative deposition heads: A case study With FDMInternational Conference on Progress in Additive ManufacturingSingapore, 2018, pp.377-382.
    [Google Scholar]
  31. BalasankarA. AnbazhakanK. ArulV. MutharaianV.N. SriramG. AruchamyK. OhT.H. RamasundaramS. Recent advances in the production of pharmaceuticals using selective laser sintering.Biomimetics20238433010.3390/biomimetics804033037622935
    [Google Scholar]
  32. YiS.Q. LinP. A dual-channel heterogeneous nozzle 3D sand mold printer structural scheme design Light Industrial Science and Technology.Hang Zhou, China2023397783
    [Google Scholar]
  33. ChacónJ.M. CamineroM.Á. NúñezP.J. García-PlazaE. BécarJ.P. Effect of nozzle diameter on mechanical and geometric performance of 3D printed carbon fibre-reinforced composites manufactured by fused filament fabrication.Rapid Prototyping J.202127476978410.1108/RPJ‑10‑2020‑0250
    [Google Scholar]
  34. FernandesD.L.A. PavliukM.V. SáJ. A 3D printed microliquid jet with an adjustable nozzle diameter.Analyst2015140186234623810.1039/C5AN01329A26258181
    [Google Scholar]
  35. AlruwailiM. LopezJ.A. McCarthyK. ReynaudE.G. RodriguezB.J. ReynaudE.G. Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height.Biodes. Manuf.20192317218010.1007/s42242‑019‑00043‑w
    [Google Scholar]
  36. YuK. GaoQ. LuL. ZhangP. LiuY.W. ZhangP. A process parameter design method for improving the filament diameter accuracy of extrusion 3D printing.Materials2022157245410.3390/ma1507245435407791
    [Google Scholar]
  37. TezelT. KovanV. Determination of optimum production parameters for 3D printers based on nozzle diameter.Rapid Prototyping J.202228118519410.1108/RPJ‑08‑2020‑0185
    [Google Scholar]
  38. ParkJ.H. LyuM-Y. KwonS.Y. RohH.J. KooM.S. ChoS.H. Temperature analysis of nozzle in a FDM Type 3D printer through computer simulation and experiment.Elastomers and Composites201651430130710.7473/EC.2016.51.4.301
    [Google Scholar]
  39. VogelD. WeißmannV. RührmundL. HansmannH. BaderR. Influence of nozzle temperature and volumetric filling on the mechanical properties of 3D-printed PEEK.Mater. Test.202062435135610.3139/120.111490
    [Google Scholar]
  40. NiA. PrabhakarM.N. SukI.H. ParkJ.K. SongJ.I. Numerical and experimental analysis of a flame-retardant polymer material after extrusion through the printing nozzle of fused filament fabrication system.Mech. Based Des. Struct. Mach.20235163138315410.1080/15397734.2021.1919525
    [Google Scholar]
  41. SutopaM.S. SultanT. RozinE.H. XuX. GardanJ. CetinkayaC. Monitoring for the effects of extruder nozzle temperature on the micro-mechanical properties of 3D printed phononic artifacts.J. Manuf. Process.20239833735010.1016/j.jmapro.2023.05.035
    [Google Scholar]
  42. YangF. ZhangM. BhandariB. LiuY. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters.Lebensm. Wiss. Technol.201887677610.1016/j.lwt.2017.08.054
    [Google Scholar]
  43. OskolkovA. A. BezukladnikovI. I. TrushnikovD. N. Rapid temperature control in melt extrusion additive manufacturing using induction heated lightweight nozzle.Appl. Sci.20221216806410.3390/app12168064
    [Google Scholar]
  44. Baeza-CampuzanoA. Morales-CastilloJ. CastañoV.M. The influence of the gap diameter on the polymer thread temperature and velocity at the exit of the 3D printer nozzle.Polimery2022677-833734510.14314/polimery.2022.7.6
    [Google Scholar]
  45. SonJ-H. ParkH-W. HaD.W. LeeC-U. KimJ-S. KangS-K. Developing integrated compressor cooler system of 3D printing nozzle.J. Korean Soc. Manufact. Techno. Eng.201726161210.7735/ksmte.2017.26.1.6
    [Google Scholar]
  46. ChinK.W. LeeS.W. Structural design of 3D printer nozzle with superior heat dissipation characteristics for deposition of materials with high melting point.The Korea Institute of Electronic Communication Sciences202015313318
    [Google Scholar]
  47. SharmaV. RoozbahaniH. AlizadehM. HandroosH. 3D printing of plant-derived compounds and a proposed nozzle design for the more effective 3D FDM printing.IEEE Access20219571075711910.1109/ACCESS.2021.3071459
    [Google Scholar]
  48. KłodowskiA. EskelinenH. SemkenS. Leakage-proof nozzle design for RepRap community 3D printer.Robotica201533472174610.1017/S0263574714000502
    [Google Scholar]
  49. DineA. BentleyE. PoulmarcL.A. DiniD. ForteA.E. TanZ.H. A dual nozzle 3D printing system for super soft composite hydrogels.HardwareX20219e0017610.1016/j.ohx.2021.e00176
    [Google Scholar]
  50. ElangoM. SubramanianN. MarianR. GohM. Distributed hybrid multiagent task allocation approach for dual-nozzle 3D printers in microfactories.Int. J. Prod. Res.201654237014702610.1080/00207543.2016.1171419
    [Google Scholar]
  51. LeiF. MengX.F. ZhangJ.P. ZhengR.T. Structural design of single extrusion head with dual nozzles for FDM-type parallel mechanism 3D printer.Equipment Manufact. Techno.20193718720
    [Google Scholar]
  52. ChenJ. ZhaoQ. WuG. SuX. ChenW. DuG. Design and analysis of a 5-degree of freedom (DOF) hybrid three-nozzle 3D printer for wood fiber gel material.Coatings2022128106110.3390/coatings12081061
    [Google Scholar]
  53. JaligamaS. KameokaJ. HwanC.S. Three dimensional coaxial multi-nozzle device for high-rate microsphere generation.J. Mater. Sci.20195422142331424210.1007/s10853‑019‑03865‑2
    [Google Scholar]
  54. TruongA. State-of-the-art review on 3D printing technology applications in constructionM.S. thesis. University of California, Irvine, California, Irvine, ON, United States.2019
    [Google Scholar]
  55. HardinJ.O. OberT.J. ValentineA.D. LewisJ.A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks.Adv. Mater.201527213279328410.1002/adma.20150022225885762
    [Google Scholar]
  56. ChinS.Y. DikshitV. Meera PriyadarshiniB. ZhangY. Powder-based 3D printing for the fabrication of device with micro and mesoscale features.Micromachines202011765810.3390/mi1107065832630141
    [Google Scholar]
  57. YanY.H. ShuK.M. ChangC.C. An analysis of 3d-printing familiarity among students in a technical university.International Symposium on Emerging Technologies for EducationCape Town, South Africa, 2017, pp.58-63.
    [Google Scholar]
  58. QiJ.X. TanC. LiC.Q. Technical analysis of FDM Color 3D printing nozzle.International Conference on Mechatronics, Computer and Education Informationization2017, pp.299-303.10.2991/mcei‑17.2017.65
    [Google Scholar]
  59. HoggattW. Development of a fluidic mixing nozzle for 3D bioprinting.M.S. thesis, University of Purdue, Purdue, ON, United States.2016
    [Google Scholar]
  60. HossainN. ChowdhuryM.A. ShuvhoM.B.A. KashemM.A. KchaouM. 3D-printed objects for multipurpose applications.J. Mater. Eng. Perform.20213074756476710.1007/s11665‑021‑05664‑w33814874
    [Google Scholar]
  61. TeixeiraJ.M. CorreiaW.F. BarrosG. TeichriebV. 3D printing as a means for augmenting existing surfaces.Symposium on Virtual and Augmented Reality, GramadoBrazil, 2016, pp.24-28.10.1109/SVR.2016.15
    [Google Scholar]
  62. SomireddyM. CzekanskiA. AtreS.V. Modelling of failure behaviour of 3d-printed composite parts.Appl. Sci.202212211072410.3390/app122110724
    [Google Scholar]
  63. LeeT. Study of trends in the architecture and the economic efficiency of 3d printing technology.Fash. Des. J. Korea Academia-Indust. Coop. Soc.201610863366343
    [Google Scholar]
  64. BalakrishnanH.K. BadarF. DoevenE.H. NovakJ.I. MerendaA. DuméeL.F. LoyJ. GuijtR.M. 3D printing: An alternative microfabrication approach with unprecedented opportunities in design.Anal. Chem.202193135036610.1021/acs.analchem.0c0467233263392
    [Google Scholar]
  65. TanF.Y. WuW.M. A block proof nozzle structure for 3d printers.C.N. Patent 2072909412018.
    [Google Scholar]
  66. ShenG. LiF. ShenY.K. 3D printing nozzle.C.N. Patent 2110747042020.
    [Google Scholar]
  67. TangY.H. ZhangK. WangX.Y. A 3D printer nozzle structure.C.N. Patent 1076379352020.
    [Google Scholar]
  68. ShenG. A 3D printing nozzle.C.N. Patent 2110747042020.
    [Google Scholar]
  69. HeS.H. A 3D printer nozzle and printer having same.W.O. Patent 2021093604 A12021.
    [Google Scholar]
  70. LiuH. TangJ. ChenC. AoD. WuD. 3D printer extrusion structure.W.O. Patent 20210936042021.
    [Google Scholar]
  71. RappP. Print head and extrusion nozzle for 3D printing.E.P. Patent 30205502016.
    [Google Scholar]
  72. WangN. ZhangY. Composite extrusion 3D printing nozzle and 3D printer.W.O. Patent 20202591402020.
    [Google Scholar]
  73. ZhangC.J. YuanY.Y. DengK.X. TangX.W. ZhongH.Q. Piezoelectric spray head of 3D printer and working method therefor, and 3D printer.W.O. Patent 20191448962019.
    [Google Scholar]
  74. WuJ. WanD.D. ZhaiW. JieH.Y. JiH.C. A new type of high-temperature resistant printing for two in one out 3D printers.C.N. Patent 2148727082021.
    [Google Scholar]
  75. WuM. A 3D printer nozzle structure with protective mechanism.C.N. Patent 2148727082021.
    [Google Scholar]
  76. ZhangY.L. A high-temperature resistant nozzle structure.C.N. Patent 2156618642022.
    [Google Scholar]
  77. HuaiW. Cooling device of print head in 3D printer.U.S. Patent 20162971102016.
    [Google Scholar]
  78. LukeD.B. CrockettwG.G. LeeB.D. Multi-hotend nozzle extruder assembly device.U.S. Patent 20203388222020.
    [Google Scholar]
  79. JainA. High Temperature Extruder for a 3D Printer.W.O. Patent 20231151172023.
    [Google Scholar]
  80. LiuH. TangJ. ChenC. AoD. PiX. Cooling mechanism of nozzle kit and nozzle kit for 3D printer.W.O. Patent 2022105033A1
    [Google Scholar]
  81. ChoiD.W. HanJ. DoH.O. ParkH.H. MoonJ.Y. Nozzle structure for 3D printer.K.R. Patent 102262891B1
    [Google Scholar]
  82. RouD.X. 3D-printer having structure for preventing deformation of nozzle.K.R. Patent 101939155
    [Google Scholar]
  83. DaoX.Y. PiaoX.H. WenZ.Y. YiS.H. HongS.Y. Nozzle coupling structure for 3D printer.K.R. Patent 102055236 B1
    [Google Scholar]
  84. LeeS.H. Nozzle structure applying RF heating device for 3D printer.U.S. Patent 11420386B2
    [Google Scholar]
/content/journals/eng/10.2174/0118722121292028240323195759
Loading
/content/journals/eng/10.2174/0118722121292028240323195759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test