Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Active shock absorbers and more sophisticated cushioning materials are being used in lander vibration-damping design due to the requirement for space exploration and scientific study. This has allowed landers to land on more planetary surfaces and carry out a range of intricate scientific studies. As a result, lander damping structure design and optimization are now crucial. To categorize the lander shock absorption structures based on the various structural configurations and principles of operation, to enumerate the features of each, and to forecast the direction of future development. An analysis is conducted on the present state of many sample patents concerning structures that absorb shock during landings. The development stage of currently available shock-absorbing structures is examined in accordance with their properties, and the most recent patented technologies are explained and contrasted. The development stage of currently available shock-absorbing structures is examined in accordance with their properties and the most recent patented methods are explained and contrasted. Problems of the vibration-damping structure are analyzed, and its development trend is prospected. Results showed that Large landers and heavy loads are best served by mechanical damping; medium-sized loads and environments requiring high damping control are best served by magnetorheological fluid damping; complex environments and medium-to-large-sized loads are best served by hydraulic damping; small loads and low damping requirements are best served by collapsed-method damping.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121314310240624043755
2024-07-03
2025-12-28
Loading full text...

Full text loading...

References

  1. StepanovB. Soviet science fiction cinema and the space age: memorable futures.Studies in Russian and Soviet Cinema2023171545510.1080/17503132.2023.2167554
    [Google Scholar]
  2. TestoedovN.A. KarutinS.N. Space geodesy, communications, and navigation: History of the development, state, and prospects.Herald Russ. Acad. Sci.202191664765510.1134/S101933162106006X
    [Google Scholar]
  3. QiaoY.D. Research on Precision Soft Landing Guidance Algorithm for Lunar ProbeHarbin Institute of TechnologyHeilongjiang ProvinceFirst-class University of Heilongjiang Province with 211 Engineering Institutions and 985 Engineering Institutions, 2018.
    [Google Scholar]
  4. Tucker BasilP. Alewine HankC. Everybody’s business to know about space: Cross-disciplinarity and the challenges of the new space age.Space Policy202366101573
    [Google Scholar]
  5. GaringT. Taking sustainability into the space age.Engineered Systems2020372327
    [Google Scholar]
  6. ZouX. PengJ. MiaoY.M. Research and prospect of scientific exploration of the jupiter galaxy.Chinese Space Science and Technology202343110
    [Google Scholar]
  7. ZhangY.M. WangS. U.S. Sage probe lifts off for a first detailed exploration of the metallic asteroid.Space International202311613
    [Google Scholar]
  8. FanM.R. ZhangS.D. LiY. Autonomous visual positioning of asteroid probes by fusing orbital dynamics.J. Harbin Inst. Technol.2024November113
    [Google Scholar]
  9. LeiB. MaZ. LiuJ. LiuC. Dynamic modelling and analysis for a flexible brush sampling mechanism.Multibody Syst. Dyn.202256433536510.1007/s11044‑022‑09848‑7
    [Google Scholar]
  10. YangB. JiangY. LiH. JiangC. LiuY. ZhanC. JingH. DongY. Semi-analytical search for sun-synchronous and planet synchronous orbits around Jupiter, Saturn, Uranus and Neptune.Mathematics202210152684268410.3390/math10152684
    [Google Scholar]
  11. SumitakaT. HoseiN. AkiraO. Advanced passive thermal control materials and devices for spacecraft: A review.Int. J. Thermophys.20224391
    [Google Scholar]
  12. QuanQ. WangT. GuanH. TangD. DengZ. Electromagnetic damping asteroid landing cushioning mechanism and dynamic simulation analysis.Adv. Space Res.20226972756276910.1016/j.asr.2022.01.015
    [Google Scholar]
  13. LeeC.H. BalintT. Martian Delight: Exploring qualitative contact for decoupled communications.Acta Astronaut.202219377978410.1016/j.actaastro.2021.06.051
    [Google Scholar]
  14. PinelloL. BrancatoL. GiglioM. Enhancing Planetary Exploration through Digital Twins: A Tool for Virtual Prototyping and HUMS Design.Aerospace202411173
    [Google Scholar]
  15. Editorial office of the journal, HarukoMathematics in the history of spaceflight, serial 7 The shape of the spacecraft(above).Inside and outside the classroom(elementary school wisdom math)20202629
    [Google Scholar]
  16. ZengX.X. ZhangD.Z. ChenZ.X. Application of AFDX in spacecraft integrated electronic system.Cekong Jishu201635103106
    [Google Scholar]
  17. ZhangM. Interpreting the mars technology development program.Foreig. Sci. Technol. New.200508512
    [Google Scholar]
  18. PatonM. McSorleyA. Virtual prototyping of a lander for the fast transfer of humans to mars.J. Br. Interplanet. Soc.200962369377
    [Google Scholar]
  19. LiuW. ZhuW.L. LiY. Parachute strength aerodrop test of tianwen-1 probe.Space Return and Remote Sensing2022431222
    [Google Scholar]
  20. GuoW. Research on Energy Absorption and Application of Three-Dimensional Curved Dot Matrix StructuresMaster's Thesis, Hunan University2020
    [Google Scholar]
  21. ZhuangL. Study on the Dynamic Characteristics of Metal-Rubber-Aluminum Honeycomb Lander Cushioning MechanismHarbin Institute of TechnologyHeilongjiang ProvinceFirst-class University of 211 Engineering Institutions and 985 Engineering Institutions, 2020.
    [Google Scholar]
  22. YuanY.N. Research on the New Concept of Manned Lunar Lander Based on Cat-like LegsNanjing University of Aeronautics and Astronautics, Jiangsu Province, 211th Project Institutions2020
    [Google Scholar]
  23. GaoD. HeB.J. ZhangH.Y. Thermal protection of a lunar lander from multi-engine plumes using thin film cooling.Aerosp. Sci. Technol.2023143108730
    [Google Scholar]
  24. MisoT. HashimotoT. NinomiyaK. Optical guidance for autonomous landing of spacecraft.IEEE Trans. Aerosp. Electron. Syst.199935245947310.1109/7.766929
    [Google Scholar]
  25. WangY.R. LiuX.C. LuoK.Y. Development status and the prospect of international deep space exploration technology (above).China Aerospace20023134
    [Google Scholar]
  26. WangY.R. LiuX.C. LuoK.Y. Development status and the prospect of international deep space exploration technology (below).China Aerospace20022628
    [Google Scholar]
  27. FoingB.H. The Moon as a platform for astronomy and space science.Adv. Space Res.19961811172310.1016/0273‑1177(96)00083‑X
    [Google Scholar]
  28. WangZ. ChenC. ChenJ. 3D soft-landing dynamic theoretical model of legged lander: Modeling and analysis.Aerospace2023109811
    [Google Scholar]
  29. LinR. GuoW. ZhaoC. HeM. Conceptual design and analysis of legged landers with orientation capability.Chin. J. Aeronauti.202336317118310.1016/j.cja.2022.08.001
    [Google Scholar]
  30. WangH. HeT. WangC. A comprehensive performance optimization method for the honeycomb buffer of a legged-type lander.Aircr. Eng. Aerosp. Technol.202193582183110.1108/AEAT‑02‑2021‑0043
    [Google Scholar]
  31. LuoC.J. Theoretical Model and Optimization Design Research of Legged Landing BufferHarbin Institute of TechnologyHeilongjiang Province 211 Engineering Institutions 985 Engineering Institutions First-class Universities, 2010.
    [Google Scholar]
  32. WangM. ZhaoT. T. LiuQ. D. Application of a new-type damping structure for vibration control in deployment process of satellite antenna component.J. Phys.: Conf. Ser.202117804204210.1088/1742‑6596/1748/4/042042
    [Google Scholar]
  33. DimnetE. Haza-RozierE. VinceslasG. LeónR. HernándezG. Experimental and numerical study of a shock-absorbing structure.Acta Mech.2013224123037305510.1007/s00707‑013‑0900‑8
    [Google Scholar]
  34. ZhangX. WuJ.Z. Common failures and structural damage of aging aircraft.Aeronaut. Manufact. Technol.20125660
    [Google Scholar]
  35. MpagazeheJ.N. StreetK.W.Jr DelgadoI.R. Fred HiggsC.III An experimental study of lunar dust erosive wear potential using the JSC-1AF lunar dust simulant.Wear20143161-2799110.1016/j.wear.2014.04.018
    [Google Scholar]
  36. SunH.N. Lunar soft landing cushion foot design and its landing cushion performance simulation studyHarbin Institute of TechnologyHeilongjiang Province, China2023
    [Google Scholar]
  37. BrunsJ O MendellW W. Future astronomical observatories on the moon.NASA-CP-24891989
    [Google Scholar]
  38. MoisheevA.A. ShirshakovA.E. On the fiftieth anniversary of the launch of luna-16, luna-17, and venera-7.Sol. Syst. Res.202155776577110.1134/S0038094621070133
    [Google Scholar]
  39. ShkuratovY.G. KaydashV.G. OpanasenkoN.V. Iron and titanium abundance and maturity degree distribution on the lunar nearside.Icarus1999137222223410.1006/icar.1999.6046
    [Google Scholar]
  40. Zhuhai ANYES Technology Co. Ltd.; Patent issued for device and method for detecting compression and reposition performance of hydraulic buffer for elevator (USPTO 10, 723, 590).J. Eng.2020
    [Google Scholar]
  41. ZengX.L. Research on Institutional Buffer Device for Spacecraft Surface AttachmentHarbin Institute of TechnologyHeilongjiang Province 211 Project Institutions 985 Project Institutions First-class Universities, 2021.
    [Google Scholar]
  42. JoungW. KimY.G. LeeJ. Transient characteristics of a loop heat pipe-based hydraulic temperature control technique.Int. J. Heat Mass Transf.201610312513210.1016/j.ijheatmasstransfer.2016.07.068
    [Google Scholar]
  43. NiuB.Y. Structural Design and Optimization of Magnetorheological Buffer for Lunar Probe Landing SystemChongqing UniversityChongqing 211 Project Institutions 985 Project Institutions Ministry of Education Directly Affiliated Institutions Top Universities, 2016.
    [Google Scholar]
  44. AdlerG.D. Carrying the fire.Aviat. Hist.2021326868
    [Google Scholar]
  45. PoundsK. Apollo in perspective: Spaceflight then and now.Phys. Educ.200035430731010.1088/0031‑9120/35/4/3b4
    [Google Scholar]
  46. Anonymous PPG Helps Commemorate Anniversary of Apollo 11 Moon Landing.Paint & Coatings Industry2019Vol. 35
    [Google Scholar]
  47. Title 3--The President : 50th Anniversary Observance of the Apollo 11 Lunar Landing : By the President of the United States of America.The Federal Register/FIND201984
    [Google Scholar]
  48. XuW. Experimental and Simulation Research on Heat and Energy Integration System of Air VehicleHuazhong University of Science and TechnologyHubei Provincefirst-class university under the Ministry of Education of the People's Republic of China, 2022.
    [Google Scholar]
  49. LuoL.R. BaoC.C. Braking and attitude control of lunar lander in active descent stage.Open Astronomy202332120220217
    [Google Scholar]
  50. KongL.G. The Search for Immortality.History Today202272
    [Google Scholar]
  51. ZuoW. LiC.L. ZhangZ.B. China’s lunar and planetary data system: preserve and present reliable change project and tianwen-1 scientific data sets.Space Sci Rev202121788
    [Google Scholar]
  52. WangQ. China’s moon exploration project.Modern Physical Knowledge2019313474
    [Google Scholar]
  53. LuB. Potential and developmental implications of lunar exploration.International Space1998l-4
    [Google Scholar]
  54. StewartN. The clementine mission: Past, present, and future.Acta Astronaut.19951161169
    [Google Scholar]
  55. WangJ.Q. SongZ. Trends of International Lunar and Planetary Exploration in the 21st Century.International Space1998510
    [Google Scholar]
  56. QieX.N. ZengG.Q. RenY. Lunar Probe Orbital Design.National Defense Industry Press2001112122
    [Google Scholar]
  57. WilliamsR.J. GibsonE.K. The origin and stability of lunar goethite, hematite and magnetite.Earth Planet. Sci. Lett.1972171848810.1016/0012‑821X(72)90261‑0
    [Google Scholar]
  58. HapkeB. Surveyor I and Luna IX pictures and the Lunar Soil.Icarus196761-3254264
    [Google Scholar]
  59. SiwulskiT. WarzynskaU. New solution to increase the safety of operating system with hydrostatic drive.Scient. J. Milit. Univ. Land Forc.2018188219720710.5604/01.3001.0012.2507
    [Google Scholar]
  60. BlancbardU. LysseJ. Full-scale dynamic landing-impact investigation of aportotype lunar module landing gear.Nasa Technical Note D19695029141
    [Google Scholar]
  61. ZhangL. WeiX. A novel structure of rubber ring for hydraulic buffer seal based on numerical simulation.Appl. Sci.20211152036203610.3390/app11052036
    [Google Scholar]
  62. WangC. Design Theory and Dynamic Analysis of Landing Buffer Mechanism for New Concept Lunar ExplorationNanjing University of Aeronautics and AstronauticsJiangsu Province211th Project Institution, 2020.
    [Google Scholar]
  63. PinkosA. ShtarkmanE. FitzgeraldT. An actively damped passenger car suspension system with low voltage.SAE Technical Paper Series paper,no.9302681993
    [Google Scholar]
  64. MargidaA.J. WeissK.D. CarlsonJ.D. Bullogh WAed Proc of the 5th Int Confon ER Fluids, MR Suspensions and Associated Technology.SingaporeWorld Scientific1996544550
    [Google Scholar]
  65. Science : Applied Physical ScienceInvestigators at university of maryland report findings in applied physical science (Using Mason number to predict MR damper performance from limited test data).J. Technol. Sci.2017318328
    [Google Scholar]
  66. SunW. LiC.Y. WangJ.N. Research on the smoothness of composite suspension for off-road vehicles.Automot. Eng.202244105114
    [Google Scholar]
  67. OuJ.P. GuanX.C. Experimental study on the performance of magnetorheological energy dissipators.Earthq. Eng. Eng. Vib.1999197681
    [Google Scholar]
  68. LinW.S. ZhiyingR. LiangliangS. Numerical modeling and topological analysis of entangled single-wire metal rubber.Mat. Sci. Eng. A2024891145983
    [Google Scholar]
  69. WangP. LiJ.X. SuJ.B. Precision assembly technology of lunar probe landing buffer mechanism.Autom. Eng.202244105114
    [Google Scholar]
  70. ZhangY. Analysis and research on cushioning materials for soft landing of lunar probes.Earthq. Eng. Eng.Vibr.2008197681
    [Google Scholar]
  71. WangQ. Design of cushioning foot for the soft moon landing and analysis of cushioning dynamicsHarbin Institute of TechnologyHeilongjiang Province, China2021
    [Google Scholar]
  72. LiuZ.Q. HuangC.P. Overview of the development of soft landing mechanism for lunar probes.China Space Sci. Technol.20063334
    [Google Scholar]
  73. ChenJ.B. NieH. BaiH.M. Review on the development of soft landing buffer mechanisms for lunar probes.Proceedings of the Third Academic Conference of the Deep Space Exploration Technology Committee of the Chinese Society of Aeronautics and Astronautics.20066069
    [Google Scholar]
  74. JooA.L. JohnC. Lunar lander conceptual design.NASA1989
    [Google Scholar]
  75. HuangZ. Q. TangZ. J. WangX. P. Bidirectional buffer spring.CN. Patent 216447348U2022.
    [Google Scholar]
  76. ZhangJ. Multistage buffer device for separating firer components for a spaceflight.CN. Patent 116280289A2023.
    [Google Scholar]
  77. PepkaC. Spring and damper systems for attenuating the transmission of energy.U.S. Patent 2015198217A12015.
    [Google Scholar]
  78. ZhouY. Shock-absorbing suspension structure for automobile shock-absorbing.WO. Patent 2023070623A12023.
    [Google Scholar]
  79. BaeJ.S. HwangS.H. LeeJ.H. Hybrid shock absorber.KR. Patent 101372972B12014.
    [Google Scholar]
  80. BaeJ.S. HwangJ.H. YiM.S. LimJ.H. A shock-absorber using permanent magnets.KR. Patent 101306823B12013.
    [Google Scholar]
  81. MaranvilleC. GieseD. GinderJ. SchmidtJ. Magnetorheological damping device for reduction or elimination of vibration in steering systems.U.S. Patent 2011017556A12011.
    [Google Scholar]
  82. MarjoramR.H. ChrzanM.J. Magnetorheological twin-tube damping device.U.S. Patent 6695102B12004.
    [Google Scholar]
  83. OliverM. L KruckemeyerW. JensenE. L Magnetorheological damper with piston bypass.EP. Patent 1245855A22002.
    [Google Scholar]
  84. TangH X. TanY Q Anti-falling shock absorber.CN. Patent 216842833U2022.
    [Google Scholar]
  85. JuanF G Rubber buffer.CN. Patent 111059203A2020.
    [Google Scholar]
  86. MaW. J. LeeC. C. HsiehW. Y. Damper structure.TW. Patent M570378U2018.
    [Google Scholar]
  87. NiwaS. NishiyamaK. MasudaH. TeranishiY. Installation structure for vibration isolation device.WO. Patent 2006067830A12006.
    [Google Scholar]
  88. LEEC.W. Shock absorber for spacecraft lander.KR. Patent 101348135B12014.
    [Google Scholar]
  89. ShibaharaK. Hydraulic shock-absorbing device.WO. Patent 2016052008A12016.
    [Google Scholar]
  90. SawaiS. Hydraulic shock absorbing apparatus for vehicle.U.S. Patent 2018079275A12018.
    [Google Scholar]
  91. ShirahamaS. AokiT. Hydraulic fluid composition for shock absorber and method of enhancing the damping force of shock absorber.JP. Patent 2008248160A2008.
    [Google Scholar]
  92. MaruscicaM.I. Multiple telescopic shock absorber.RO. Patent 137565A02023.
    [Google Scholar]
  93. SuzukiK. Vibration damping bush.WO. Patent 2008090594A12008.
    [Google Scholar]
  94. ZhangY. LiR. B. Nested spring damping and honeycomb aluminum combined soft landing buffer device for the low-temperature low-voltage heavy-load scene.CN. Patent 114962531A2022.
    [Google Scholar]
  95. ZhuW LiuX F DaiZ. M. Three-leg type lander buffer mechanism.CN. Patent 104816840A2015
    [Google Scholar]
/content/journals/eng/10.2174/0118722121314310240624043755
Loading
/content/journals/eng/10.2174/0118722121314310240624043755
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): collapse method; Damping structures; hydraulic; magnetorheological; metal-rubber; springs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test