Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

With the continuous progress of electronic information technology, people have begun to study the combination of electronic information technology and hydraulic technology to achieve more accurate and flexible control. Electro-hydraulic servo technology was thus developed. Much attanetion has been paid to electro-hydraulic servo valve, a key component of electro-hydraulic servo technology.

Objective

The number of stages of the electro-hydraulic servo valve, the structure form of the electro-hydraulic servo valve hydraulic front stage, the feedback form of the electro-hydraulic servo valve, the output form of electro-hydraulic servo valve, and the control algorithm based on the application of electro-hydraulic servo valve are analyzed and commented respectively. Combined with associated patents, the research direction and hot topics of electro-hydraulic servo valves are analyzed.

Methods

The electro-hydraulic servo valves were briefly classified; and then the problems of different types of valves were discussed in depth.

Results

By analyzing the problems of electro-hydraulic servo valves, the problems of how to improve the control accuracy, response speed, anti-interference ability, service life and cost reduction of electro-hydraulic servo valves are analyzed comprehensively, and the future development prospect of electro-hydraulic servo valves is predicted and outlooked.

Conclusion

Analyzing and discussing the existing hot issues of electro-hydraulic servo valves helps to update and change the electro-hydraulic servo valves, and makes corresponding references for the subsequent research of electro-hydraulic servo valves.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121284727240117081349
2024-03-29
2025-10-03
Loading full text...

Full text loading...

References

  1. FangQ. HuangZ. Development history, research status and development trend of electro-hydraulic servo valve.Mach Tools Hydraulics.20073511162164
    [Google Scholar]
  2. KangS.Q. JiangL.Q. Development history and research status analysis of electro-hydraulic servo valve.Informat. Manag.200905194
    [Google Scholar]
  3. YountE.N. StiglicP.M. A hybrid digital hydraulic servo.SAE Technical Paper196510.4271/650317
    [Google Scholar]
  4. GuoR.L. Design and research of electro-hydraulic servo valve.Mach. Tools Hydraul.1974031745
    [Google Scholar]
  5. ChenZ. R. DYSF-1P electro-hydraulic pressure control servo valve.Technol. Informat.197502125
    [Google Scholar]
  6. ChenZ. R. Design analysis and simulation calculation of DYSF-1P electrohydraulic pressure control servo valve.EHSV1975226-42+44-97
    [Google Scholar]
  7. KanekoT. A research on electro-hydraulic pressure control servovalve.Bull. JSME19782115581682310.1299/jsme1958.21.816
    [Google Scholar]
  8. ChenZ.R. DYSF-3P electro-hydraulic pressure control servo valve.Hydraul. Pneumat.1980011117
    [Google Scholar]
  9. GaoP.G. Electronic control device of YJ-741 electro-hydraulic servo valve.Tianj. Metallurg.1990034041
    [Google Scholar]
  10. LeeY.B. ZhuS.G. JiaG.H. Development of three-stage electro-hydraulic servo valve.Inf. Technol.19760536779
    [Google Scholar]
  11. BiaforeL.P. HollanB. Fluidics-feasibility study electro/hydraulic/fluidic direct drive servo valve.Defense Technical Information Center1979
    [Google Scholar]
  12. JiaG.H. 3G-I type three-stage electro-hydraulic servo valve.Technol. Informat.1982011428
    [Google Scholar]
  13. XuR.Q. Development of electro-hydraulic servo valve cartridge.Hydraul. Pneumat.19850246
    [Google Scholar]
  14. FanT.T. Preliminary study of flow feedback electro-hydraulic servo valve. J. Luoyang Univ. Tech.1987045360
    [Google Scholar]
  15. LingJ.J. ZhouZ.Z. Research and development of high-frequency electro-hydraulic servo valve.Mach. Tools Hydraul.1988011117
    [Google Scholar]
  16. ShangZ.W. Development of high-frequency large-flow electro-hydraulic servo valve.Hydraul. Pneumat.199002711
    [Google Scholar]
  17. LaiZ.H. Successful development of explosion-proof electro-hydraulic servo valve.Hydraul. Indust.19910335
    [Google Scholar]
  18. YaoJ.G. Direct drive electro-hydraulic servo valve.Manufactur. Technol. Mach. Tools.1998124749
    [Google Scholar]
  19. Anti-pollution high frequency noise KS type electro-hydraulic servo valve.Wuhan University of Science and Technology2001
    [Google Scholar]
  20. Digital electro-hydraulic servo valve test bench. Hubei ProvinceWuhan University of Science and Technology2001
    [Google Scholar]
  21. Multi-functional step-type electro-hydraulic servo valve (cylinder).Xi'an University of Technology2001
    [Google Scholar]
  22. ChenK. S. Fully digital integrated flexible electro-hydraulic servo valve device.CN. Scientific Research Achievement2004
    [Google Scholar]
  23. A digital input electro-hydraulic servo valve. Hubei Province.Wuhan University of Science and Technology2007
    [Google Scholar]
  24. TanakaH. IshiharaT. A new single-stage electrohydraulic servo valve.Aeronaut. Test Tech.1980031820
    [Google Scholar]
  25. HuL.P. Development of practical single-stage electro-hydraulic servo valve.Hydraul. Pneumat.1990041517
    [Google Scholar]
  26. ZhangG.Q. Single-stage rotary electro-hydraulic servo valve.Mach. Tools Hydraul.1991023438
    [Google Scholar]
  27. LiuX.M. WuS.L. JiangX.H. Characteristic study of single-stage electro-hydraulic servo valve directly driven by miniature DC brushless motor.Petrochem. Automat.2005069799+101
    [Google Scholar]
  28. ChenC. Research on pressure characteristics of single-stage nozzle baffle electro-hydraulic servo valve.Inter. Combus. Engines and Accessor.2022352047781
    [Google Scholar]
  29. LiuC.Q. TaiJ.J. A new type of two-stage electro-hydraulic digital servo valve.Hydrop. Generat.2003024951
    [Google Scholar]
  30. LuX.H. GaoD.R. Calculation and analysis of flow field in a two-stage electro-hydraulic servo valve with double nozzle baffle valve.Zhongguo Jixie Gongcheng2012231619511956
    [Google Scholar]
  31. YuM.H. Research on dynamic modelling and diagnosis of two-stage double-nozzle baffle electro-hydraulic servo valve.M.S. thesis, Yanshan University, Qinhuangdao, ON, China2015
    [Google Scholar]
  32. LeeL.F. YuM.H. MaC.F. GuoX.X. DongM. Simulation and fault study of two-stage double-nozzle baffle electro-hydraulic servo valve based on AMESim.Mach. Tools Hydraul.20174501177180
    [Google Scholar]
  33. LiuX.G. YueD.L. AnL.C. BaiG.X. Modelling and simulation of force feedback two-stage electro-hydraulic servo valve based on MATLAB.Hydraul. Pneum.2015285058385
    [Google Scholar]
  34. GuZ.Z. Performance test and simulation analysis of force feedback two-stage electrohydraulic servo valve.Machin. Manag. Devel.201631112527
    [Google Scholar]
  35. ChengX. AnP. WangC.L. Structure and modelling study of super magnetostrictive two-stage electrohydraulic servo valve.Mach. Tools Hydraul.201139038385
    [Google Scholar]
  36. RenJ.S. LeeX.Y. JiangT.M. Experimental study on accelerated degradation of two-stage electro-hydraulic servo valves with double-nozzle baffle based on blob wear.Qual. Reliab.2012158021418
    [Google Scholar]
  37. WuS. JiaoZ. YanL. DongW. A high flow rate and fast response electrohydraulic servo valve based on a new spiral groove hydraulic pilot stage.J. Dyn. Syst. Meas. Control2015137606101010.1115/1.4029356
    [Google Scholar]
  38. EsatogluA. SalamciM.U. Sliding mode control design for a two-stage of electro-hydraulic valve.Proceedings of the 3rd International Conference on Vision, Image and Signal ProcessingNanjing, China20191610.1145/3387168.3387231
    [Google Scholar]
  39. ZohrehK. MohammadZ. SaeedS.G. KeivanB. Modeling the effects of the external acceleration on the two stage flapper-nozzle servo electrohydraulic valves.Modar. Mechan. Eng.2016151118
    [Google Scholar]
  40. ChenM. DongX. LeeS.J. ZouC.F. Suppression of squeal noise excited by the pressure pulsation from the flapper-nozzle valve inside a hydraulic energy system.Energies.201811495510.3390/en11040955
    [Google Scholar]
  41. XuanH.S. PHAM. Modeling for finding armature assembly moment of inertia in jet pipe servo valve torque motor.J. Adv. Mech. Des. Syst. Manuf.201483
    [Google Scholar]
  42. ZhangL.L. HuangZ.P. FuC.W. XuY.P. WangY.H. KongX.D. Design and verification of two-stage brake pressure servo valve for aircraft brake system.Processes.20219697910.3390/pr9060979
    [Google Scholar]
  43. LiuH. Idea of structural improvement of D079 three-stage electro-hydraulic servo valve.Phys. Explorat. Equipment.1998023435+50
    [Google Scholar]
  44. HuangX.S. QuL.P. SuiZ.F. Development of three-stage electric feedback servo valve.Mach. Tools Hydraul.201038025355+57
    [Google Scholar]
  45. LuanQ.L. Research on control strategy of three-stage valve-controlled hydraulic shaker.Vibrat. Shock20143324138143
    [Google Scholar]
  46. WangX.Z. ZhangX.Y. WangY. Discussion on the stability of three-stage electro-hydraulic servo valve system.Hydraul. Pneumat.200107911
    [Google Scholar]
  47. ZhangL. ChenK.S. WuR. ZhanC.C. Modelling and dynamic characteristic simulation study of three-stage electro-hydraulic servo valve for jet pipe.Hydraul. Pneum.2018322066672
    [Google Scholar]
  48. WuL. ZhangL. ChenK. ZhanC. Effect of key structures and parameters on dynamic characteristics of three-stage jet-pipe servo valve.IOP Conference Series: Materials Science and Engineering201901216110.1088/1757‑899X/493/1/012161
    [Google Scholar]
  49. XuY.M. Mechanism analysis of high-frequency self-excited oscillation at zero position of three-stage electro-hydraulic servo valve.J. Wuhan Univ. Technol.2008118015053
    [Google Scholar]
  50. WenG. LiangM.Q. ZhangZ.P. XuY.M. Stability of three-stage electro-hydraulic servo valves and its effect on the system.Mach. Tools. Hydraulics.200824107113115
    [Google Scholar]
  51. CaiL. Simulation study of main valve flow field of three-stage electro-hydraulic servo valve.M.S. thesis, Harbin Institute of Technology, Harbin, ON, China2009
    [Google Scholar]
  52. LiuX.C. Research on the characteristics of three-stage electro-hydraulic servo valve and its control technology.Dr. thesis, Harbin Institute of Technology, Harbin, ON, China2010
    [Google Scholar]
  53. ZhangR.X. Design and research on hydraulic control system of 50kg high speed impact tester.M.S. thesis, Shenyang University of Technology, Shenyang, ON, China2022
    [Google Scholar]
  54. IstantoI. Effects of major design parameters on three-stage electro-hydraulic servovalve performance.In AETA 2016: Recent Advances in Electrical Engineering and Related Sciences: Theory and ApplicationNanjing, China2017459468
    [Google Scholar]
  55. QuX.T. Dual piezoelectric wafer-driven nozzle baffle servo valve”.J. Jilin Univ.200502153156
    [Google Scholar]
  56. ZhouM.L. YangZ.G. TainY.T. ChengG.M. GaoW. Research on piezoelectric nozzle flap valve and its control method.Opti. Precis. Engin.20071536
    [Google Scholar]
  57. ChenZ.G. LeeZ.G. HuangQ. Research on pressure characteristics of double-nozzle baffle electro-hydraulic servo valve.Construct. Machin.20050728-30+112-113
    [Google Scholar]
  58. ChenZ.G. HuangQ. Research on flow characteristics of electro-hydraulic servo valve with double-nozzle baffle.Mach. Tools Hydraul.200603115117
    [Google Scholar]
  59. GuoW. YangJ.M. RenX.Y. HuoP.F. Flow field analysis of a dual-nozzle baffle servo valve preamplifier.Fluid Transmiss. Control.201039022830
    [Google Scholar]
  60. MuD.J. LeeC.C. YanH. SunM. Nonlinear modelling of a dual-nozzle baffle servo valve and its linearisation.Jixie Gongcheng Xuebao2012480219319810.3901/JME.2012.02.193
    [Google Scholar]
  61. LuX.H. ZhaoJ.H. GaoD.R. Spool oscillation analysis of a dual-nozzle baffle force feedback servo valve.J. Appl. Mech.20143103452496
    [Google Scholar]
  62. ZhouS.L. GaoD.R. LaingY.N. Analysis of fluid-solid coupling in the front stage of a double-nozzle baffle electrohydraulic servo valve.Hydraul. Pneum.201528606124129
    [Google Scholar]
  63. DuF.H. MaS.B. LeeX.Y. ShengH.X. GuJ.J. JaingS.S. Research on anti-pollution ability of double-nozzle-baffle electrohydraulic servo valve.Hydraul. Pneum.201832812108114
    [Google Scholar]
  64. ZhangJ. Research on electromagnetic characteristics of torque motor of double nozzle baffle electrohydraulic servo valve.J. Huazhong Univ. Sci. Technol.201947011821
    [Google Scholar]
  65. LaingL.J. Research on the effect of nozzle jet on the performance of nozzle baffle valve and jet image detection.M.S. thesis, Harbin Institute of Technology, Harbin, ON, China2021
    [Google Scholar]
  66. HuangH. ZhouY. ChenK.S. LeiH.H. Optimisation of main parameters of double-nozzle baffle electro-hydraulic servo valve.J. Wuhan Univ. Technol.20113406455457
    [Google Scholar]
  67. ZhangP. Analysis of flow field and static and dynamic characteristics of double-nozzle baffle servo valve.M.S. thesis, Kunming University of Science and Technology, Kunming, ON, China2011
    [Google Scholar]
  68. WenZ.X. Fault diagnosis of valve-controlled hydraulic cylinder system based on neural network.M.S. thesis, Anhui University of Science& Technology, Huainan, ON, China2020
    [Google Scholar]
  69. WangG.L. ZongY.T. PanX.D. Research on ultrasonic-assisted dual-nozzle baffle valve press-fit position control technology.Aviation Precision Manufacturing Technology20195503610
    [Google Scholar]
  70. ShengzhuoZ. NayZ.A. SongjingL. Reduction of undesired lateral forces acting on the flapper of a flapper-nozzle pilot valve by using an innovative flapper shape”.Energy Convers. Manage.2015106835848
    [Google Scholar]
  71. YangH. XuY. ChenZ. WangW. LeeS. Cavitation suppression in the nozzle-flapper valves of the aircraft hydraulic system using triangular nozzle exits.Aerosp Sci Technol2021112219110659810.1016/j.ast.2021.106598
    [Google Scholar]
  72. ZhangJ. QiN. QianZ. JiangJ. Influence of pre-stage cavitation on performance of double-nozzle flapper pressure servo valves.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2021235236822683210.1177/0954406221994879
    [Google Scholar]
  73. LuL. LongS. ZhuK. A numerical research on vortex street flow oscillation in the double flapper nozzle servo valve.Processes.201971072110.3390/pr7100721
    [Google Scholar]
  74. WangX.H. YanY.J. LeeQ.X. Contaminant lock life prediction of double flapper-nozzle servo valve.Adv. Mat. Res.201493395395810.1016/j.aim.2014.06.006
    [Google Scholar]
  75. ZhaoJ. ZhangB. ChenT. WangQ. ZhouS. GaoD. Research on valve core's clamping stagnation of double flapper-nozzle servo valve.High Technol. Lett.20192519
    [Google Scholar]
  76. ZhuY. FeiS. Design criterion involving comprehensive performance characteristics of nozzle–flapper valves.Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.2016230545246610.1177/0959651816628718
    [Google Scholar]
  77. WangX.H. LiQ.X. FengY.L. Research of double nozzle flapper valve accelerated degradation test.Appl. Mech. Mater.2014532182110.4028/www.scientific.net/AMM.532.18
    [Google Scholar]
  78. GaoD. ZhaoJ. ZhuoS. Performance analysis of double nozzle flapper servo valve based on liquid-solid couple effect and moving grid approach.Conference of Hydrodynamic and Electromechanical Control Engineering201510.4028/www.scientific.net/AMM.779.13
    [Google Scholar]
  79. GaoJ. DengZ.C. HuW.P. Finite element analysis of the main components of jet pipe servo valve.Mach. Sci. Technol.2012311118801884
    [Google Scholar]
  80. HuL.M. LeeS.G. HouY.Y. FangG. XieZ.G. CaoW. Design and performance study of a new piezoelectric stack-driven jet pipe servo valve.Mach. Tools Hydraul.202048073437
    [Google Scholar]
  81. HeX.G. HaungZ. JinY.L. MinL. Research on the technology of jet pipe type electro-hydraulic pressure servo valve.Mach. Tool. Hydraul.201341106062
    [Google Scholar]
  82. ZhaoK.Y. YuanZ.H. ZhangY. Analysis of feedback spring assembly of jet pipe servo valve.Zhongguo Jixie Gongcheng2013241926062610
    [Google Scholar]
  83. XianY.B. FeiC.H. HuY.T. Vibration characterisation of jet pipe servo valve torque motor.Fluid. Trans. Control.2014670614+8
    [Google Scholar]
  84. ChenD.D. JinY.L ZhouZ. QuL.P. Research on axial mating and zero position characteristic test system of jet pipe type servo valve slide valve.Mach. Tools Hydraulics.201947225456+110
    [Google Scholar]
  85. MaL.R. AMESim simulation and experimental study of jet pipe-type electro-hydraulic pressure servo valve in brake system.Mach. Tools Hydraul.201947229092
    [Google Scholar]
  86. MengL.K. ZhuY.C. DingJ.J. LinW. LuJ. YuX.B. Effect of erosion on the operating characteristics of the front stage of jet pipe servo valve.Hydraul. Pneumat.20224606101106
    [Google Scholar]
  87. WangY. YinY. Performance reliability of jet pipe servo valve under random vibration environment.Mechatronics.201964210228610.1016/j.mechatronics.2019.102286
    [Google Scholar]
  88. WuL. ChenK. ZhanC. Snapshot POD analysis of transient flow in the pilot stage of a jet pipe servo valve.J. Turbul.2018191088990910.1080/14685248.2018.1524579
    [Google Scholar]
  89. ZhangQ.F. YanL. DuanZ.H. JiaoZ.X. GeradaC. ChenI.M. High torque density torque motor with hybrid magnetization pole arrays for jet pipe servo valve.IEEE Trans. Ind. Electron.201967321332142
    [Google Scholar]
  90. ZhangY. ChenJ. Numerical simulation of jet pipe servo valve.Tehnički Vjesnik2020272391398
    [Google Scholar]
  91. ZhaoK.Y. WuQ.X. ZhangL.J. YuanZ.H. YangJ.Q. Analysis of the jet pipe electro-hydraulic servo valve with finite element methods.MATEC Web of Conferences201815306013
    [Google Scholar]
  92. YinY. HeC. LeeJ. Stiffness Model of the Armature Assembly in a Jet Pipe Pressure Servo Valve202010.21203/rs.3.rs‑52619/v1
    [Google Scholar]
  93. RajuM. ShivakumarR.I. SivaR.K.L. SandeepD. Sensitivity study of the parameters affecting pressure recovery in a two stage jet pipe electro hydraulic servo valve.International Conference on Emerging Trends in Engineering (ICETE) Emerging Trends in Smart Modelling Systems and Design202069770210.1007/978‑3‑030‑24314‑2_82
    [Google Scholar]
  94. WangS.M. ZuoZ.Q. YanH. XuL.L. DongL.J. Modelling and dynamic characteristic study of deflector jet servo valve.J. Military. Eng.20183903598607
    [Google Scholar]
  95. ChuY.B. HeX.G. WangJ.T. Study on the contamination stall mechanism and influence of deflector jet type pressure servo valve.Mach. Tools Hydraul.202149131924
    [Google Scholar]
  96. WangF.J. LeeC.C. YanH. KangS. HuangJ. LeeL. Calculation and analysis of the flow field in the front stage of a deflector jet valve.Hydraul. Pneum.2016300087478
    [Google Scholar]
  97. DongN.N. SunH.Q. ZhangJ. Influence of V-groove position on the fluid flow characteristics of the front stage of a biased jet servo valve.Hydraul. Pneum.20193350716
    [Google Scholar]
  98. YinY.B. ZhangP. ZhangY. Research on pressure characteristics of deflector plate servo valve.Fluid Transmission and Control.201465041015
    [Google Scholar]
  99. ShangY.X. SunX.S. HuC.W. WuS. Optimised design of amplification stage of jet deflector plate servo valve.Mach. Tools Hydraul.201543061115+26
    [Google Scholar]
  100. WangH.L. Design and realisation of servo valve for jet deflector plate.Hydraul. Pneum.2015288088386
    [Google Scholar]
  101. LiuZ.H. WangS.H. CaoW. Optimal design method of jet stage for deflector plate jet servo valve.Hydraul. Pneumat. Seal.201535091921
    [Google Scholar]
  102. YanH. RenY.K. YaoL. DongL.J. Analysis of the internal characteristics of a de ector jet servo valve.Chin. J. Mech. Eng.20193202180192
    [Google Scholar]
  103. BijanK.S. LeeS.L. LvX.B. Analysis of pressure characteristics under laminar and turbulent flow states inside the pilot stage of a deflection flapper servo-valve: Mathematical modeling with CFD study and experimental validation.Chinese J. Aeronaut.202033168.03363374
    [Google Scholar]
  104. ChuY. YuanZ. HeX. DongZ. Model construction and performance degradation characteristics of a deflector jet pressure servo valve under the condition of oil contamination.Int. J. Aerosp. Eng.2021202111710.1155/2021/8840084
    [Google Scholar]
  105. MaL. YanH. CaiC. RenY. Temperature drift mechanism of deflector jet servo valve under temperature shock.Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.2023237346247810.1177/09596518221132457
    [Google Scholar]
  106. LiangN. YuanZ.H. ZhangF.L. Oil particle-induced erosion wear on the deflector jet servo valve prestage.Aerospace.20231016710.3390/aerospace10010067
    [Google Scholar]
  107. HeX.G. KangX.N. LiuJ.S. ZhiQ. Technology research on deflectorjet brake pressure servo-valve.CSAA/IET International Conference on Aircraft Utility Systems, 2018pp. 582-587 Melbourne, Australia
    [Google Scholar]
  108. RenY. YanH. CaiC. Numerical study on flow-induced noise of deflector jet servo valve based on les/lighthill hybrid method.Shock Vib.2022202211710.1155/2022/8379245
    [Google Scholar]
  109. ZhouQ. ChenP.Y. TangY. LeeY.C. WangC.Y. Simulation and experimental research on cavitation effect of deflector jet valve.International Conference on Mechatronics and Intelligent Robotics202090991610.1007/978‑981‑15‑0238‑5_96
    [Google Scholar]
  110. FangX. YuanJ.Y. YinY.B. GuoS.R. Semi-physical rectification method for control parameters of electric feedback servo valve.Hydraul. Pneumat. Seal.201838026871
    [Google Scholar]
  111. YinY.B. LeeS.L. ZhangZ.H. LeeW.D. Study on the wear characteristics of the feedback blob of force-feedback electrohydraulic servo valve.J. Huazhong Univ. Sci. Technol.202048113742
    [Google Scholar]
  112. LeeS.G. HuL.M. CaoK.Q. XieZ.G. CaoW. Modelling and dynamic characteristics simulation of force-feedback jet pipe servo valve.Firepower. Command. Control.201742109196+102
    [Google Scholar]
  113. ZongM.Y. YangZ.Y. A force feedback electro-hydraulic pressure servo valve.Hydraul. Pneumat. Seal.202040114
    [Google Scholar]
  114. LeeY.S. Physical modelling of a two-stage electrohydraulic servo valve with double-nozzle baffle force feedback.Hydraul. Pneumat.20210450046973
    [Google Scholar]
  115. YinL. DengW. YangX. YaoJ. Finite-time output feedback control for electro-hydraulic servo systems with parameter adaptation.Machines20219.1021410.3390/machines9100214
    [Google Scholar]
  116. ZhangC. PD plus dynamic pressure feedback control for a direct drive stewart manipulator.Energies.2020135112510.3390/en13051125
    [Google Scholar]
  117. FenjanR.M. Study the hydraulic performance of an electrohydraulic servo valve with mechanical feedback.JoRTM201933
    [Google Scholar]
  118. YanH. JiangB.W. ZuoZ.Q. Valve control system with mechanical feedback.Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), 2019pp. 737-746 Shenzhen, China
    [Google Scholar]
  119. DaiQ. ZhaoJ. LiS. JiaW. Characterization of 2D electrical feedback flow control valve.Machines202311222010.3390/machines11020220
    [Google Scholar]
  120. ChengM. LuoS. DingR. XuB. ZhangJ. Dynamic impact of hydraulic systems using pressure feedback for active damping.Appl. Math. Model.20218945446910.1016/j.apm.2020.07.043
    [Google Scholar]
  121. LiuY. LeeX. Y. LiuX. Discussion on the description method of flow servo valve in hydraulic system simulation.Mach Tools Hydraul.20144210137139
    [Google Scholar]
  122. FangD. L. Development of dynamic test system for large flow servo valve.Fluid Transmiss. Control.201785063840
    [Google Scholar]
  123. HeH.L. Atypical application of flow servo valve for pressure control.Hydraul. Pneumat. Seal.202040036971
    [Google Scholar]
  124. ZuoX.Q. ZhangS.L. LiuG.W. MengB. RuanJ. Characteristics of bourdon tube force feedback type 2D pressure servo valve.Zhongguo Jixie Gongcheng2018291213931398
    [Google Scholar]
  125. LuL. XiaF.Y. YinY.B. YaunJ.Y. XiangF. Dynamic characteristic analysis and optimisation of small-ball rotary direct-drive pressure servo valve.J. Aeronaut.20183910266275
    [Google Scholar]
  126. LongQ. RaunJ. LeeS. HeJ.F. Stability of a 2D pressure servo valve considering the effect of air pockets.J. Aeronaut.20204105291304
    [Google Scholar]
  127. ZhangH.R. Ou YangX.P. Analysis of pressure servo valve whistling based on return hydraulic resistance”.J. Zhejiang Univ. Sci.2019531120852091
    [Google Scholar]
  128. DingJ.J. JinY.L. JinX. ChenJ.Q. Development of a comprehensive test bench for performance testing of two-way brake pressure servo valve.Mar. Eng.202042S1255258
    [Google Scholar]
  129. WangL.N. WangL. DongY.Z. Research on failure analysis of electrohydraulic pressure servo valve.Hydraul. Pneumat. Seal.201939097881
    [Google Scholar]
  130. HuangZ. YuB. WangY. ZhangQ. XieY. XieZ. KongX. Structural analysis and improvement design of brake pressure valve feedback stage in multivalve parallel brake system.Shock Vib.2021202111910.1155/2021/4551799
    [Google Scholar]
  131. LiZ. ChangL. ZhaoJ. CaoJ. RuanJ. Development of a novel two-dimensional(2D) three-way(3W) fuel flow control servo valve with constant pressure difference.Flow Meas. Instrum.20228710221010.1016/j.flowmeasinst.2022.102210
    [Google Scholar]
  132. ZhangY. WangS. ShiJ. WangX. Evaluation of thermal effects on temperature-sensitive operating force of flow servo valve for fuel metering unit.Chin. J. Aeronauti.20203361812182310.1016/j.cja.2019.09.011
    [Google Scholar]
  133. JieH. LeeY. H. A novel low pressure-difference fluctuation electro-hydraulic large flowrate control valve for fuel flowrate control of aeroengine afterburner system.Chin. J. Aeronauti.2022351363376
    [Google Scholar]
  134. SongY. BaK. WangY. ZhangJ. YuB. ZhangQ. KongX. Study on nonlinear dynamic behavior and stability of aviation pressure servo valve-controlled cylinder system.Nonlinear Dyn.202210843077310310.1007/s11071‑022‑07366‑x
    [Google Scholar]
  135. ChuY. YuanZ. ChangW. Research on the dynamic erosion wear characteristics of a nozzle flapper pressure servo valve used in aircraft brake system.Math. Probl. Eng.2020202011310.1155/2020/3136412
    [Google Scholar]
  136. HuangJ. ZhangQ. ZhaoF. LiuX. WangT. Analysis and suppression of self-excited oscillations in pressure servo valve system.Appl. Sci.20221217847710.3390/app12178477
    [Google Scholar]
  137. JianH. WeiW. LiH. YanQ. Optimization of a pressure control valve for high power automatic transmission considering stability.Mech. Syst. Signal Process.201810118219610.1016/j.ymssp.2017.08.018
    [Google Scholar]
  138. ZhangX.H. ChenK.Q. CaoY.J. DaiY. LiuL. Research on energy pressure closed-loop control algorithm of electrohydraulic servo system.Missile. Space. Launch Technol.2018359017483
    [Google Scholar]
  139. LianX.M. LeeC. ChenZ.W. HeH.N. WuF.M. Research on electro-hydraulic servo biaxial fatigue test force control system and its amplitude phase control algorithm.Mach. Tools Hydraul.20194702145166
    [Google Scholar]
  140. ZhangX.H. CaoY.J. ShengW.W. Digital dynamic pressure feedback algorithm for electro-hydraulic servo system controlling the rudder surface of an aircraft.Hydraul. Pneumat. Seal.201939042529
    [Google Scholar]
  141. LeeS. DongJ. GuoK. SunC.C. JiangZ.H. Research on 2D servo valve controller based on fuzzy algorithm.J. Zhejiang Univ.20194704355360
    [Google Scholar]
  142. WangB.K. Research on adaptive control of single leg valve cylinder position of hydraulic quadruped robot.Hydraul. Pneumat. Seal.201939082940
    [Google Scholar]
  143. HeH. DongB.K. LinY.F. ChuY.C. ZhangB. Design of drive control circuit for fully digital electro-hydraulic servo valve.Electron. Des. Eng.20202811175178+183
    [Google Scholar]
  144. ZhangC.S. QinY.F. ZhaoL.F. Research on the control algorithm for jitter elimination of tandem hydraulic servo manipulator.Mach. Tools Hydraul.202048155658+87
    [Google Scholar]
  145. ChenS. WangC.W. ZhangZ.Y. JiX.H. ZhaoZ.K. Improved fuzzy PID method and its application in electro-hydraulic servo control.Electromechan. Engin.20213805559565
    [Google Scholar]
  146. LiuL. DengQ. TangD. W. Research on sliding mode control strategy of electro-hydraulic position servo system for valve-controlled asymmetric hydraulic cylinder.Construct. Machin.202354017881+9
    [Google Scholar]
  147. ZhuC. ZhangH. WangW. LeeK. ZhouZ. HeH. Compound control on constant synchronous output of double pump-double valve-controlled motor system.Processes.202210352810.3390/pr10030528
    [Google Scholar]
  148. MaY. GuL.C. XuY.G. ShiL.C. WangH.T. Research on control strategy of asymmetric electro-hydraulic servo system based on improved PSO algorithm.Adv. Mech. Eng.20221451687813222109622610.1177/16878132221096226
    [Google Scholar]
  149. GuoY.Q. ZhaX.M. ShenY.Y. WangY.N. ChenG. Research on PID position control of a hydraulic servo system based on Kalman genetic optimization.Actuators MDPI2022116162
    [Google Scholar]
  150. LiangQ. GaoJ. LiuF. WangK. ZhangH. WangZ. SuD. Application of hardware-in-the-loop simulation technology in the development of electro-hydraulic servo system control algorithms.Electronics.20221123385010.3390/electronics11233850
    [Google Scholar]
  151. CaoF. PID controller optimized by genetic algorithm for direct-drive servo system.Neural Comput. Appl.2020321233010.1007/s00521‑018‑3739‑z
    [Google Scholar]
  152. ChenZ.H. WangS.K. XuK. WangJ.Z. ZhaoJ.B. NiuS.S. Research on high precision control of joint position servo system for hydraulic quadruped robot.2019 Chinese Control Conference (CCC), 2019, pp. 755-760 Hangzhou, China
    [Google Scholar]
  153. QiW. YangB. ChaoY. Research on hydraulic servo valve control based on fuzzy RBF.J. Phys. Conf. Ser.20222417101202910.1088/1742‑6596/2417/1/012029
    [Google Scholar]
  154. SuS. ZhuY. LeeC. TangW. WangH. Dual-valve parallel prediction control for an electro-hydraulic servo system.Science Progress.20201031003685041987566210.1177/0036850419875662
    [Google Scholar]
  155. LiuX. WangR. SunT. DuX. An adaptive optimal control algorithm for jet pipe electro-hydraulic servo valve.2019 Chinese Control Conference (CCC), 2019, pp. 1968-1972 Hangzhou, China10.23919/ChiCC.2019.8865709
    [Google Scholar]
  156. MarhoonH.M. IbrahimA.R. BasilN. Enhancement of electro hydraulic position servo control system utilising ant lion optimiser.IJNAA202112224532461
    [Google Scholar]
  157. JiX. WangC. ZhangZ. ChenS. GuoX. Nonlinear adaptive position control of hydraulic servo system based on sliding mode back-stepping design method.Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.2021235447448510.1177/0959651820949663
    [Google Scholar]
  158. ChenG. JiaP. YanG. LiuH. ChenW. JiaC. AiC. Research on feedback-linearized sliding mode control of direct-drive volume control electro-hydraulic servo system.Processes202199167610.3390/pr9091676
    [Google Scholar]
  159. YangM. ZhangQ. LuX. XiR. WangX. Adaptive sliding mode control of a nonlinear electro-hydraulic servo system for position tracking.Mechanics201925428329010.5755/j01.mech.25.4.22822
    [Google Scholar]
  160. FanY. ShaoJ. SunG. Optimized PID controller based on beetle antennae search algorithm for electro-hydraulic position servo control system.Sensors.20191912272710.3390/s19122727
    [Google Scholar]
  161. WeiG. SunP.F. AiC. WangL. ChenL.J. ChenW.T. ZhengS.W. YangD. Multisource electrohydraulic servo valve fault status diagnostic algorithm based on a message propagation mechanism.Meas. Sci. Technol..202334505530210.1088/1361‑6501/acaf93
    [Google Scholar]
  162. ShangY. LiR. WuS. LiuX. WangY. JiaoZ. A research of high-precision pressure regulation algorithm based on ON/OFF valves for aircraft braking system.IEEE Trans. Ind. Electron.20226987797780610.1109/TIE.2021.3108705
    [Google Scholar]
  163. ShenJ.X. CuiH.X. FengK. ZhangH. LeeH.L. Parameter identification and control algorithm of electrohydraulic servo system for robotic excavator based on improved hammerstein model.Math. Probl. Eng.202019
    [Google Scholar]
  164. ZhengX. SuX. Sliding mode control of electro-hydraulic servo system based on optimization of quantum particle swarm algorithm.Machines202191128310.3390/machines9110283
    [Google Scholar]
  165. GaoB. GuanH. ShenW. YeY. Application of the gray wolf optimization algorithm in active disturbance rejection control parameter tuning of an electro-hydraulic servo unit.Machines.202210859910.3390/machines10080599
    [Google Scholar]
  166. DongM. LuanX. WuB. LiangJ. The fuzzy control of electro-hydraulic servo system based on DE algorithm.Proceedings of 2018 Chinese Intelligent Systems Conference, 2019 pp. 747-757 Chongqing, China.10.1007/978‑981‑13‑2291‑4_73
    [Google Scholar]
  167. ChenS. Trajectory tracking and control algorithm for precision parallel robot.J. Adv. Comput. Intell. Intell. Inform.201923223724110.20965/jaciii.2019.p0237
    [Google Scholar]
  168. LeeC.M. YinY.B. LeeS.L. An electrohydraulic servo valve with acceleration zero-bias drift suppression function.CN. Patent 108533816B,2019
    [Google Scholar]
  169. FeiS.S. ZhouJ.F. ChuS.L. LiL.H. An in-line assembly and adjustment device for electro-hydraulic servo valve.CN. Patent 110030231B,2020
    [Google Scholar]
  170. WangJ.Z. NiuS.S. WangS.K. ZhaoJ.B. ShengW. LeeJ.C. A pilot stage digital electrohydraulic servo valve with variable area gradient.CN. Patent 110185664B,2021
    [Google Scholar]
  171. ZouX.Z. ChenY.Z. A kind of non-similar margin electro-hydraulic servo valve.CN. Patent 108035923B,2020
    [Google Scholar]
  172. ZengQ.M. LeeL.S. An oil leakage prevention device for electrohydraulic servo valve.CN. Patent 209557365U,2019
    [Google Scholar]
  173. ZhaoY.Z. ZhouX.Y. WangG. KuaiJ.J. LeeJ.W. Threaded cartridge rotary direct-drive electrohydraulic servo valve with harmonic reducer.CN. Patent 108953276A,2018
    [Google Scholar]
  174. LiuD. LiuT. Y. A cartridge type rotary direct-drive electrohydraulic servo valve with gear reducer.CN. Patent 212744554U,2021
    [Google Scholar]
  175. JiangL.L. WangX.L. XianY.P. FangQ.L. LuM. A triple redundant electro-hydraulic servo valve zero position combination adjustment device and its adjustment method.CN. Patent 109296578B,2020
    [Google Scholar]
  176. ZhaoY.Z. ZhouX.Y. Chip type spool rotary direct-drive electro-hydraulic servo valve.CN. Patent 208311170U,2019
    [Google Scholar]
  177. YinY.B. LeeC.M. XiaF.Y. A jet pipe electro-hydraulic servo valve adapted to variable temperature field.CN. Patent 108386566B,2020
    [Google Scholar]
  178. MengL. DaiM.Z. LiuB. XuH. Two-dimensional force feedback electro-hydraulic servo valve.CN. Patent 12455029U,2021
    [Google Scholar]
  179. JiangZ.H. LongX.J. LeeX. QiB.C. HuJ.J. A spool rotary electro-hydraulic servo valve.CN. Patent 109944959A,2019
    [Google Scholar]
  180. LeeC.C. YinY.B. LeeC. A rebound jet deflector electro-hydraulic servo valve with hydrostatic support.CN. Patent 108533559B,2019
    [Google Scholar]
  181. HuJ.J. YangZ.H. KongX.D. Piezoelectric ceramic-driven electro-hydraulic servo valve for jet pipe.CN. Patent 107435667B,2020
    [Google Scholar]
  182. LiuZ.H. WangS.H. QiF.F. A deflector plate jet electro-hydraulic servo valve based on piezoelectric structure.CN. Patent 106678102A,2017
    [Google Scholar]
  183. CuiJ.K. A combination nozzle for nozzle baffle type electrohydraulic servo valve.CN. Patent 211160271U,2020
    [Google Scholar]
  184. ChenZ.H. ChenY. ChenY. Intelligent electro-hydraulic flow servo valve.CN. Patent 102094865B,2013
    [Google Scholar]
  185. WuL. WenX.L. ChenK.S. JiangJ. ZhanC.C. ChenX.Y. A high-frequency high linearity jet tube type electro-hydraulic servo valve.CN. Patent 204476911U,2015
    [Google Scholar]
  186. YuS. QuL.P. LuJ. JinY.L. WangS.M. ChenD.D. Spool built-in piston type two-stage electro-hydraulic servo valve with high flow force feedback injection tube.CN. Patent 207715455U,2018
    [Google Scholar]
  187. NiuB.L. LiuQ. WangY. LingM.X. LeeX.L. WangY.F. An electrohydraulic servo valve for large g-value acceleration environment.CN. Patent 103591074B,2016
    [Google Scholar]
  188. GuanX.C. A moving coil two-stage slide valve type flow control electro-hydraulic servo valve.CN. Patent 203348634U,2013
    [Google Scholar]
  189. RenX.J. LiuZ.H LvD.Z. CaoW. LeeL. Deflector plate jet servo valve based on additive manufacturing valve body structure.CN. Patent 109519431A,2019
    [Google Scholar]
  190. JiangD.W. JiangK.P. LiuJ. ChenW.R. Two-stage slide valve type electro-hydraulic servo valve directly driven by finite-angle torque motor.CN. Patent 104405709A,2015
    [Google Scholar]
  191. ZhuY.C. WangX.L. ChengQ.F. LeeY.S. Multi-nozzle baffle electro-hydraulic servo valve and its working method.CN. Patent 102242743B,2013
    [Google Scholar]
  192. ZhangX. ChengX.F. XieZ.J. TianS.M. YangW.G. Electrohydraulic servo valve force feedback structure.CN. Patent 205937278U,2017
    [Google Scholar]
/content/journals/eng/10.2174/0118722121284727240117081349
Loading
/content/journals/eng/10.2174/0118722121284727240117081349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test