Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

In various specific application domains, electro-hydraulic servo systems are widely adopted due to their high power-to-volume ratio, superior dynamic response performance, and extremely high control accuracy. However, the inevitable presence of nonlinear factors in the system poses a series of challenges for precise mathematical modeling and the design and application of different forms of control strategies. This article aims to explore how various control strategies are specifically implemented to address the nonlinear characteristics of electro-hydraulic servo systems, building upon the research progress in modeling these systems considering nonlinear factors. Subsequently, the article summarizes their innovative applications in electro-hydraulic servo systems. Simultaneously, relevant patents and technologies were reviewed and summarized. The patent paper provides a detailed comparison and analysis of various nonlinear modeling methods, with a particular focus on the significance of neural networks and fuzzy logic control in enhancing the performance of electro-hydraulic servo systems. The article reveals significant advancements in modern control strategies in dealing with uncertainties and disturbances within the system, offering new perspectives and ideas for improving system efficiency and achieving energy resource conservation with technological progress. The review provides a series of practical recommendations aimed at optimizing the performance of electro-hydraulic servo systems. Despite progress in multiple research endeavors, future research should focus on further enhancing system performance and applying these strategies to a broader range of scenarios.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121294966240304051356
2024-04-03
2025-10-03
Loading full text...

Full text loading...

References

  1. JiaoZ. ShuaiW. YangL. Current status and trend analysis of intelligent development in hydraulic components and systems.J. Mechan. Eng.20232023128
    [Google Scholar]
  2. BoF. XieA. ZhaoC. Nonlinear modeling and simulation of electro-hydraulic servo random vibration control system.J. Beijing Inst. Technol.20204005491495
    [Google Scholar]
  3. LiuC. LiuY. LiuJ. Electro-hydraulic servo plate-inclined plunger hydraulic transformer.IEEE Access2016486088616
    [Google Scholar]
  4. ChenS. YinY. JinZ. Adaptive fuzzy control with variable domain for hydraulic servo systems.Mach. Tool Hydraul.202351107883
    [Google Scholar]
  5. ZhouX. CaiK. LiuZ. Design and simulation research on axisymmetric vector nozzle hydraulic servo system.Mach. Tool Hydraul.20232023110
    [Google Scholar]
  6. GuoD. ChenZ. Research and implementation of an efficient direct-drive hydraulic angular position servo control system.Mach. Tool Hydraul.20235109124129
    [Google Scholar]
  7. NengL. JieZ. XieW. Friction and wear of ultra-low-speed servo cylinder.Hydraul. & Pneumat.20234703153159
    [Google Scholar]
  8. Bin Yao Fanping Bu ReedyJ. ChiuG.T-C. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments.IEEE/ASME Trans. Mechatron.200051799110.1109/3516.828592
    [Google Scholar]
  9. LiuY. WangT. GongG. GaoR. Present status and prospect of high-frequency electro-hydraulic vibration control technology.Chin. J. Mech. Eng.20193219310.1186/s10033‑019‑0406‑y
    [Google Scholar]
  10. SongY. HuZ. AiC. Fuzzy compensation and load disturbance adaptive control strategy for electro-hydraulic servo pump control system.Electronics2022117115910.3390/electronics11071159
    [Google Scholar]
  11. UrsuI. UrsuF. PopescuF. Backstepping design for controlling electrohydraulic servos.J. Franklin Inst.200634319411010.1016/j.jfranklin.2005.09.003
    [Google Scholar]
  12. GuoQ. ChenZ. ShiY. LiX. YanY. GuoF. LiS. Synchronous control for multiple electrohydraulic actuators with feedback linearization.Mech. Syst. Signal Process.202217810928010.1016/j.ymssp.2022.109280
    [Google Scholar]
  13. WangY. WangY. Advances in research on electro-hydraulic force control.Hydraul. Pneumat.20020714
    [Google Scholar]
  14. YaoJ. JiaoZ. MaD. YanL. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties.IEEE/ASME Trans. Mechatron.201419263364110.1109/TMECH.2013.2252360
    [Google Scholar]
  15. YaoJ. DengW. SunW. Precision motion control for electro-hydraulic servo systems with noise alleviation: A desired compensation adaptive approach.IEEE/ASME Trans. Mechatron.20172241859186810.1109/TMECH.2017.2688353
    [Google Scholar]
  16. GuanC. PanS. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters.Control Eng. Pract.200816111275128410.1016/j.conengprac.2008.02.002
    [Google Scholar]
  17. GuanC. PanS. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters.IEEE Trans. Control Syst. Technol.200816343444510.1109/TCST.2007.908195
    [Google Scholar]
  18. GuoQ. ZhangY. CellerB.G. SuS.W. State-constrained control of single-rod electrohydraulic actuator with parametric uncertainty and load disturbance.IEEE Trans. Control Syst. Technol.20182662242224910.1109/TCST.2017.2753167
    [Google Scholar]
  19. AhnK.K. NamD.N.C. JinM. Adaptive backstepping control of an electrohydraulic actuator.IEEE/ASME Trans. Mechatron.201419398799510.1109/TMECH.2013.2265312
    [Google Scholar]
  20. QingG.U.O. PingS.U.N. JingminY.I.N. Parametric adaptive estimation and back-stepping control of electro-hydraulic actuator with decayed memory filter.ISA Trans.201662202214
    [Google Scholar]
  21. LeeW. KimM.J. ChungW.K. Asymptotically stable disturbance observer-based compliance control of electrohydrostatic actuators.IEEE/ASME Trans. Mechatron.202025119520610.1109/TMECH.2019.295849033746502
    [Google Scholar]
  22. ZhaoH. DuanS. YangS. Impact of valve-controlled asymmetric cylinder friction on cylinder pressure.Mach. Tool; Hydraul.20154317173175
    [Google Scholar]
  23. DongR. PinD. QiangX. High-precision control of electro-hydraulic actuator based on friction compensation.Mach. Tool & Hydraul2022500197101
    [Google Scholar]
  24. Canudas de WitC. OlssonH. AstromK.J. LischinskyP. A new model for control of systems with friction.IEEE Trans. Automat. Contr.199540341942510.1109/9.376053
    [Google Scholar]
  25. ShiraziR.L. Friction identification using the Karnopp model,applied to an electro pneumatic actuator.Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.2003217212313810.1177/095965180321700206
    [Google Scholar]
  26. JianC. Research on pneumatic synchronization system based on motion and pressure independent control.Dissertation Thesis; Zhejiang University2009
    [Google Scholar]
  27. EsfandiariM. SepehriN. Controller design and stability analysis of output pressure regulation in electrohydrostatic actuators.J. Dyn. Syst. Meas. Control2019141404100810.1115/1.4042028
    [Google Scholar]
  28. SchwungA. BeckM. AdamyJ. Fault diagnosis of dynamical systems using recurrent fuzzy systems with application to an electrohydraulic servo axis.Fuzzy Sets Syst.201527713815310.1016/j.fss.2015.04.006
    [Google Scholar]
  29. ZhangY. ChenJ. Numerical simulation of jet pipe servo valve.Teh. Vjesn.2020272391398
    [Google Scholar]
  30. MileckiA. OrtmannJ. Influences of control parameters on reduction of energy losses in electrohydraulic valve with stepping motors.Energies20211419611410.3390/en14196114
    [Google Scholar]
  31. WeiG. PengfeiS. ChaoA. LeiW. LijuanC. WentingC. ShuweiZ. DongY. Multisource electrohydraulic servo valve fault status diagnostic algorithm based on a message propagation mechanism.Meas. Sci. Technol.202334505530210.1088/1361‑6501/acaf93
    [Google Scholar]
  32. TaiM. JiangY. ChenL. ZhuY. Theoretical research on magnetization and demagnetization process of electrohydraulic servo valve with permanent magnet torque motor.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2021235173439345310.1177/0954406220961126
    [Google Scholar]
  33. SomashekharS.H. SingaperumalM. KumarR.K. Modelling the steady-state analysis of a jet pipe electrohydraulic servo valve.Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.2006220210912910.1243/095965106X78211
    [Google Scholar]
  34. ChuntaC.H.E.N. Hybrid approach for dynamic model identification of an electro-hydraulic parallel platform.Nonlinear Dyn.201220126769567711
    [Google Scholar]
  35. XiangG. FengZ. Nonlinear analysis methods in the study of electro-hydraulic servo systems.J. Shanghai Jiaotong Univ.200203306310
    [Google Scholar]
  36. LiuL. LiuH. WuZ. Modeling and analysis of friction and backlash effects in machine tool feed servo systems.Nongye Jixie Xuebao20104111212218
    [Google Scholar]
  37. LiuL. LiuH. WuZ. Modeling and analysis of the feed servo system in large CNC Lathe.Vibrat. Shock201231063236
    [Google Scholar]
  38. WuZ. LiuH. LiuL. Modeling and analysis of heavy-duty lathe cross-feed servo system considering frictional effects.Chin. J. Mech. Eng20124807869310.3901/JME.2012.07.086
    [Google Scholar]
  39. JingN. XiangZ. FuzaiL. Research on nonlinear modeling and SSA control of electro-hydraulic servo systems.Chin. J. Mech. Eng.20081821662169
    [Google Scholar]
  40. JingN. PengL. XiangZ. Nonlinear modeling and control of expanding tube electro-hydraulic servo system.Chin. J. Mech. Eng.2009450525025510.3901/JME.2009.05.250
    [Google Scholar]
  41. HelianB. ChenZ. YaoB. Precision motion control of a servomotor-pump direct-drive electrohydraulic system with a nonlinear pump flow mapping.IEEE Trans. Ind. Electron.202067108638864810.1109/TIE.2019.2947803
    [Google Scholar]
  42. GuoQ. A comprehensive review of advances in nonlinear control technologies for electro-hydraulic servo systems.Hydraul. Pneumat.201820180319
    [Google Scholar]
  43. LeL. LinM. LiX. Adaptive backstepping control of electro-hydraulic servo position system based on fuzzy disturbance observer.J. Electr. Mach. Control.20192312143150+158
    [Google Scholar]
  44. WangJ. ChenG. JingN. Control research of electro-hydraulic servo system based on generalized predictive control.Mach. Tool Hydraul.2010380969
    [Google Scholar]
  45. QiongW. JiaoZ. JunW. Friction compensation control of pneumatic position servo system based on lugre model.Jixie Gongcheng Xuebao2018542013113810.3901/JME.2018.20.131
    [Google Scholar]
  46. TangW. Digital twin-driven mating performance analysis for precision spool valve.Machines20219815710.3390/machines9080157
    [Google Scholar]
  47. ZhuM. XiW. DanZ. Research on pressure PI gain scheduling control of high-altitude inlet control system.Propuls. Technol20194004902910
    [Google Scholar]
  48. JiangW. YongZ. ZhiZ. Research status and prospects of dynamic characteristics of electro-hydraulic servo systems.Mach. Tools Hydraul.20144219169173
    [Google Scholar]
  49. HuiW. HouD. Research on position tracking smoothness control strategy of electro-hydraulic servo system.Hydraul. Pneumat.201907107113
    [Google Scholar]
  50. ChitsangaN. KaitwanidvilaiS. Robust 2DOF fuzzy gain scheduling control for DC servo speed controller.IEEJ Trans. Electr. Electron. Eng.201611673073810.1002/tee.22298
    [Google Scholar]
  51. XuX. LongQ. WangY. Theoretical and methodological improvement of electro-hydraulic positioning system performance through dynamic correction of servo valve flow.Chin. J. Mech. Eng.200945089510010.3901/JME.2009.08.095
    [Google Scholar]
  52. ZhangH. QuanL. WangZ. Control strategy for valve-controlled cylinder hydraulic system based on recursive least squares method.Mechan. Electric. Eng.202319
    [Google Scholar]
  53. ShaoJ. XuY. SunG. Joint repetitive compensation control for hydraulic quadruped robot.J. Harbin Un. Sci. Technol.20192401813
    [Google Scholar]
  54. LiJ. WangY. WangX. ShaoJ. YangT. MaoZ. Research on electro-hydraulic force servo system based on neural network and fuzzy intelligent control strategy.J. Comput. Theor. Nanosci.20141141205121010.1166/jctn.2014.3484
    [Google Scholar]
  55. LiJ. WangY. WangX. ShaoJ. GuoL. SongY. YuX. ShiZ. research on control strategy of passive force load electro-hydraulic servo system.J. Comput. Theor. Nanosci.20151292084209010.1166/jctn.2015.3989
    [Google Scholar]
  56. LiX. GuL. GengB. Electro-hydraulic servo force loading control based on improved nonlinear active disturbance rejection control.J. Measure. Sci. Instrum.2023144442451
    [Google Scholar]
  57. GaoB. ShaoJ. LiJ. Composite electro-hydraulic position control method based on load force compensation.Trans. Chin. Soc. Agric.20144510333339
    [Google Scholar]
  58. WangX. LiuM. ShuaiC. Research on the performance of hydraulic motor with bp neural network prediction and fuzzy control.Control Eng.2020270813941400
    [Google Scholar]
  59. BingL. ZhangY. YuanL. Force prediction control and motion stability of hydraulic quadruped robot foot.Chin. J. Mech. Eng.20213205523532
    [Google Scholar]
  60. FengX. ZhangJ. XuP. Controller design of hydraulic vibration servo system based on predictive function control.J. Vib. Eng.20173003389396
    [Google Scholar]
  61. TangZ. CaoB. ShiW. Research on the discrete model arrival variable structure control strategy for parameter perturbation electro-hydraulic servo excitation system.Mach. Tool Hydraul.199619960438
    [Google Scholar]
  62. HsiehC.H. ChouJ.H. Design of optimal PID controllers for PWM feedback systems with bilinear plants.IEEE Trans. Control Syst. Technol.20071561075107910.1109/TCST.2007.908084
    [Google Scholar]
  63. ZhuW. YaoJ. LiuJ. Pump-controlled multi-linkage erection system with active disturbance rejection synchronous control.Acta Armamentarii20232023115
    [Google Scholar]
  64. PedroJ.O. DangorM. DahunsiO.A. AliM.M. Intelligent feedback linearization control of nonlinear electrohydraulic suspension systems using particle swarm optimization.Appl. Soft Comput.201424506210.1016/j.asoc.2014.05.013
    [Google Scholar]
  65. Ur RahmanM.Z. RiazM.T. Al MahmudM.M.S. RizwanM. ChoudhryM.A. The prescribed fixed structure intelligent robust control of an electrohydraulic servo system.Math. Probl. Eng.2022202211210.1155/2022/5144602
    [Google Scholar]
  66. FeiJ. BaturC. Adaptive sliding mode control with sliding mode observer design for a MEMS vibratory gyroscope.Asme International Mechanical Engineering Congress & Exposition2007
    [Google Scholar]
  67. CheginiSYM Quantum sliding mode control via error sliding surface.J. Vib. Control20182422
    [Google Scholar]
  68. TangW Q CaiY L High‐order sliding mode control design based on adaptive terminal sliding mode.Int. J. Robust Nonlinear Control2013232149166
    [Google Scholar]
  69. HaoL. GeY. DengW. Sliding mode force distribution synchronization control for dual electric cylinders in erecting.Hydraul. Pneumat.2023470495106
    [Google Scholar]
  70. GosiewskiZ. HenzelM. A robust controller for electrohydraulic drives.Diffus. Defect Data Solid State Data Pt. B Solid State Phenom.2006113616610.4028/www.scientific.net/SSP.113.61
    [Google Scholar]
  71. MileckiA. OrtmannJ. Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm.Mech. Syst. Signal Process.201796455710.1016/j.ymssp.2017.03.042
    [Google Scholar]
  72. QiangH JinS FengX Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction.IEEE Access2020202099111
    [Google Scholar]
  73. WangD ZhaoD GongM Research on robust model predictive control for electro -hydraulic servo active suspension systems.IEEE Access2017201799111
    [Google Scholar]
  74. WangZ. ZhengD. Research on hydraulic bending roller predictive control strategy based on forecast error compensation.China Mech. Eng.20071619041907
    [Google Scholar]
  75. PanM. BingZ. QiangZ. Research on control strategy for multi-cylinder synchronization based on heave compensation platform.Mach. Tool. Hydraul.20225018123128
    [Google Scholar]
  76. NaH.C. YuanH.B. ParkG. KimY-B. Multiple-input and multiple-output force control for automobile component road simulation using model predictive control with proportional–integral–derivative.J. Vib. Control20222815-161915192710.1177/10775463211000510
    [Google Scholar]
  77. DaiY. An improved hydraulic servo predictive control system.Mach. Tool. Hydraul.20235101101106
    [Google Scholar]
  78. QingG. LiX. DanJ. Distributed cooperative control method for multiple electro-hydraulic servo actuators under load disturbance.CN Patent 110107563B,2020.
    [Google Scholar]
  79. YanJ. JinK. ZhangJ. Linear active disturbance rejection control method and system for electro-hydraulic servo system based on CESO.CN Patent 115903494A,2023.
    [Google Scholar]
  80. YaoJ. ChengX. HaoW. A multi-model robust adaptive control method for electro-hydraulic position servo systems.CN Patent 108303895B,2021.
    [Google Scholar]
  81. YongX. ZhangZ. LiS. A model predictive control method and device for electro-hydraulic servo system.CN Patent 113138553B,2022.
    [Google Scholar]
  82. GaoB. WeiS. ZhengL. A method for friction compensation control in electro-hydraulic servo systems.CN Patent 114545864A,2022.
    [Google Scholar]
  83. MaD. YangG. JieR. Implementation method of adaptive robust position controller for electro-hydraulic servo system with accurate tracking performance.CN Patent 106066603B,2019.
    [Google Scholar]
  84. LiuS. ZhongY. ZhaoZ. Reconstructed control method and device for electro-hydraulic position servo system based on fuzzy active disturbance rejection control.CN Patent 114296346A,2022.
    [Google Scholar]
  85. WangL. ZhaoD. QianL. Method for constructing an electro-hydraulic proportional servo decoupling active disturbance rejection controller with dead zone compensation.CN Patent 116482983A,2023.
    [Google Scholar]
  86. HaoF. JiangJ. A fuzzy sliding mode control method for electro-hydraulic servo systems integrated with potential function.CN Patent 115524973A,2022.
    [Google Scholar]
  87. YangG. HuaW. HongR. An intelligent motion control method for hydraulic servo actuators.CN Patent 110703608B,2021.
    [Google Scholar]
  88. RuiS. Control parameter optimization method and system for electro-hydraulic force servo system based on backstepping method.CN Patent 116482981A,2023.
    [Google Scholar]
  89. HanH. Position and pressure master-slave control method for valve-controlled cylinder hydraulic servo system.CN Patent 103148063B,2015.
    [Google Scholar]
  90. XinW. MaoF. Hydraulic servo system control method and control system based on switching MMSLA.CN Patent 106406088A,2017.
    [Google Scholar]
  91. ZhangB. ZhouD. LiY. A variable domain fuzzy PID control method for dual hydraulic cylinder electro-hydraulic servo synchronization.CN Patent 106444357B,2019.
    [Google Scholar]
  92. LiT. LiS. DongY. A hydraulic system control method based on parameter adaptation.CN Patent 112555202B,2023.
    [Google Scholar]
  93. LiH. ZhenZ. TaoJ. A method for optimizing parameters of components in a dual control loop hydraulic servo system.CN Patent 106151123B,2017.
    [Google Scholar]
  94. HouG. An output feedback adaptive control method for hydraulic servo systems.CN Patent 111852992A,2020.
    [Google Scholar]
/content/journals/eng/10.2174/0118722121294966240304051356
Loading
/content/journals/eng/10.2174/0118722121294966240304051356
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test