Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

As the ecological environment deteriorates, manufacturing and construction, as major industries that consume energy and cause environmental degradation, urgently need a new technology that is more efficient and sustainable. 3D printing has become a suitable choice for the manufacturing and construction industries to solve sustainability problems and environmental pollution problems due to its lower material consumption and no need for templates.

Objective

Through the analysis of the research status of sustainable improvement of 3D printing materials, scattered research is reviewed, valuable conclusions are extracted from representative studies, and future research directions are predicted.

Methods

Researches on sustainable improvement of 3D printing materials are compared and summarized, sustainable materials that can be used to replace existing materials are described, and the performance changes of samples after material improvement are summarized.

Results

By tracking the impact of the substitution of various sustainable materials on the sample, the main problems in the current study are analyzed, including the degradation of sample performance and increased cost. On the premise of solving the above problems, the sustainable improvement of 3D printing materials in the future is prospected.

Conclusion

Improving the sustainability of 3D printing materials can help improve the environmental benefits of 3D printing. Therefore, this patent article has compared and summarized previous studies, described the available sustainable materials, and summarized the impact of various types of material substitution on samples. Considering the shortcomings of existing research, a more comprehensive evaluation of sample performance, specific quantitative assessment of environmental benefits, and expansion of indicators for evaluating environmental benefits are the key research directions in the future.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121271917231009070723
2023-10-18
2025-10-08
Loading full text...

Full text loading...

References

  1. GuoJ. ZhouY. AliS. ShahzadU. CuiL. Exploring the role of green innovation and investment in energy for environmental quality: An empirical appraisal from provincial data of China.J. Environ. Manage.202129211277910.1016/j.jenvman.2021.112779 34022650
    [Google Scholar]
  2. LiY. ZhuZ. GuanY. KangY. Research on the structural features and influence mechanism of the green ICT transnational cooperation network.Econ. Anal. Policy20227573474910.1016/j.eap.2022.07.003
    [Google Scholar]
  3. MhadhbiM. GallaliM.I. GoutteS. GuesmiK. On the asymmetric relationship between stock market development, energy efficiency and environmental quality: A nonlinear analysis.Int. Rev. Financial Anal.202177101840
    [Google Scholar]
  4. LiY.Y. ZhangY.R. PanA. HanM.C. EleonoraV. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms.Technol. Soc.202270102034
    [Google Scholar]
  5. LiuT.Y. LeeC.C. Convergence of the world’s energy use.Resour. Energy Econ.202062101199
    [Google Scholar]
  6. WenH.W. LiN.Y. LiC.C. Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries.Energy Econ.2021104105613
    [Google Scholar]
  7. LiC.C. ZhangJ. HouS.S. The impact of regional renewable energy development on environmental sustainability in China.Resour. Policy202380103245
    [Google Scholar]
  8. WangH. LiR.P. ZhangN. ZhouP. WangQ. Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis.Technol. Forecast. Soc. Change2020160120245
    [Google Scholar]
  9. ChengM.L. YangS.L. WenZ.G. The effect of technological factors on industrial energy intensity in China: New evidence from the technological diversification.Sustain. Prod. Consum.20212877578510.1016/j.spc.2021.06.032
    [Google Scholar]
  10. SuC.W. NaqviB. ShaoX.F. LiJ.P. JiaoZ. Trade and technological innovation: The catalysts for climate change and way forward for COP21.J. Environ. Manage.2020269C11077410.1016/j.jenvman.2020.110774 32560995
    [Google Scholar]
  11. FialaL. PetříkováM. KeppertM. BöhmM. PokornýJ. ČernýR. Influence of untreated metal waste from 3d printing on electrical properties of alkali-activated slag mortars.Energies20211423817810.3390/en14238178
    [Google Scholar]
  12. YangM. WangE.Z. HouY.R. The relationship between manufacturing growth and CO2 emissions: Does renewable energy consumption matter?Energy2021232121032
    [Google Scholar]
  13. AhmedG.H. A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability.J. Build. Eng.20236610586310.1016/j.jobe.2023.105863
    [Google Scholar]
  14. MohammadM. MasadE. Al-GhamdiS.G. 3D concrete printing sustainability: A comparative life cycle assessment of four construction method scenarios.Buildings2020101224510.3390/buildings10120245
    [Google Scholar]
  15. KhanS.A. KoçM. Al-GhamdiS.G. Sustainability assessment, potentials and challenges of 3D printed concrete structures: A systematic review for built environmental applications.J. Clean. Prod.202130330312702710.1016/j.jclepro.2021.127027
    [Google Scholar]
  16. AkulaV.S.R.P. GoyalK.K. VermaO.P. GuptaV. Feasibility study of a 3D printed BLDC outrunner rotor.Mater. Today Proc.20238016316710.1016/j.matpr.2022.11.090
    [Google Scholar]
  17. KafaraM. SüchtingM. KemnitzerJ. WestermannH.H. SteinhilperR. Comparative life cycle assessment of conventional and additive manufacturing in mold core making for CFRP production.Procedia Manuf.2017822323010.1016/j.promfg.2017.02.028
    [Google Scholar]
  18. AlmazroiA.A. AldhahriE.A. Al-ShareedaM.A. ManickamS. ECA-VFog: An efficient certificateless authentication scheme for 5G-assisted vehicular fog computing.PLoS One2023186e028729110.1371/journal.pone.0287291 37352258
    [Google Scholar]
  19. ZhangJ. WangJ. DongS. YuX. HanB. A review of the current progress and application of 3D printed concrete.Compos., Part A Appl. Sci. Manuf.2019125C10553310.1016/j.compositesa.2019.105533
    [Google Scholar]
  20. WengY.W. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach.J. Clean. Prod.202026112124510.1016/j.jclepro.2020.121245
    [Google Scholar]
  21. AlhumayaniH. GomaaM. SoebartoV. JabiW. Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete.J. Clean. Prod.202027012246310.1016/j.jclepro.2020.122463
    [Google Scholar]
  22. HusnaM.Y.N. ChongC.H. WongV.L. CheahK.H. WanY.K. 3D-printed PEGDA monolith with robust silane-grafted chitosan for enhanced textile wastewater treatment.J. Environ. Chem. Eng.202210610858110.1016/j.jece.2022.108581
    [Google Scholar]
  23. DongP. DingW.J. YuanH.Y. WangQ. 3D-printed polymeric lattice-enhanced sustainable municipal solid waste incineration fly ash alkali-activated cementitious composites.Dev. Built Environ.202212100101
    [Google Scholar]
  24. XuJ. WangP. ChenS. LiL. LiD. ZhangY. WuQ. FanJ. MaL. 3D-printed MoS2/Ni electrodes with excellent electro-catalytic performance and long-term stability for dechlorination of florfenicol.J. Environ. Sci.202413742043110.1016/j.jes.2022.11.004
    [Google Scholar]
  25. YuJ.T. 3D-printed titanium-based ionic sieve monolithic adsorbent for selective lithium recovery from salt lakes.Desalination2023560116651
    [Google Scholar]
  26. KumbhakarP. ParuiA. AmbekarR.S. MukherjeeM. SiddiqueS. PugnoN.M. SinghA.K. TiwaryC.S. Rain energy harvesting using atomically thin gadolinium telluride decorated 3d printed nanogenerator.Adv. Sustain. Syst.2022612227003110.1002/adsu.202270031
    [Google Scholar]
  27. MohammedB.A. Al-ShareedaM.A. ManickamS. Al-MekhlafiZ.G. AlaybaA.M. SallamA.A. ANAA-Fog: A novel anonymous authentication scheme for 5g-enabled vehicular fog computing.Mathematics2023116144610.3390/math11061446
    [Google Scholar]
  28. De SchutterG. LesageK. MechtcherineV. NerellaV.N. HabertG. Agusti-JuanI. Vision of 3D printing with concrete — Technical, economic and environmental potentials.Cement Concr. Res.2018112253610.1016/j.cemconres.2018.06.001
    [Google Scholar]
  29. RousselN. Rheological requirements for printable concretes.Cem. Concr. Res.20181127685
    [Google Scholar]
  30. LongW.J. TaoJ-L. LinC. GuY. MeiL. DuanH-B. XingF. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing.J. Clean. Prod.2019239C11805410.1016/j.jclepro.2019.118054
    [Google Scholar]
  31. ChenM.X. LiL.B. ZhengY. ZhaoP.Q. LuL.C. ChengX. Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials.Constr. Build. Mater.2018189601611
    [Google Scholar]
  32. MaG. LiZ. WangL. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing.Constr. Build. Mater.2018162613627
    [Google Scholar]
  33. TinocoM.P. de MendonçaÉ.M. FernandezL.I.C. CaldasL.R. RealesO.A.M. ToledoF.R.D. Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review.J. Build. Eng.20225210445610.1016/j.jobe.2022.104456
    [Google Scholar]
  34. ChenY. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study.Constr. Build. Mater.2020262120094
    [Google Scholar]
  35. DingT. QinF. XiaoJ.Z. ChenX.M. ZuoZ.B. Experimental study on the bond behaviour between steel bars and 3D printed concrete.J. Build. Eng.20224910410510.1016/j.jobe.2022.104105
    [Google Scholar]
  36. AnuarH. Novel soda lignin/PLA/EPO biocomposite: A promising and sustainable material for 3D printing filament.Mater. Today Commun.202335
    [Google Scholar]
  37. MohammadM. MasadE. SeersT. Al-GhamdiS.G. High-performance light-weight concrete for 3D printingSecond RILEM International Conference on Concrete and Digital Fabricationvol. vol. 28, 2020pp. 459-46710.1007/978‑3‑030‑49916‑7_47
    [Google Scholar]
  38. HopkinsonN. DicknesP. Analysis of rapid manufacturing—using layer manufacturing processes for production.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.20032171313910.1243/095440603762554596
    [Google Scholar]
  39. SchuldtS.J. JagodaJ.A. HoisingtonA.J. DeloritJ.D. A systematic review and analysis of the viability of 3D-printed construction in remote environments.Autom. Constr.2021125103642
    [Google Scholar]
  40. ThomasD. Costs, benefits, and adoption of additive manufacturing: A supply chain perspective.Int. J. Adv. Manuf. Technol.2016855-81857187610.1007/s00170‑015‑7973‑6 28747809
    [Google Scholar]
  41. HagerI. GolonkaA. PutanowiczR. 3D printing of buildings and building components as the future of sustainable construction?Procedia Eng.201615129229910.1016/j.proeng.2016.07.357
    [Google Scholar]
  42. MaG. WangL. JuY. State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction.Sci. China Technol. Sci.201861447549510.1007/s11431‑016‑9077‑7
    [Google Scholar]
  43. YangJ. ChoJ.H. YooM.J. Selective metallization on copper aluminate composite via laser direct structuring technology.Compos., Part B Eng.201711036136710.1016/j.compositesb.2016.11.041
    [Google Scholar]
  44. XuQ. JiangL.S. MaC.Q. NiuQ.J. WangX.Z. Effect of layer thickness on the physical and mechanical properties of sand powder 3D printing specimens.Front. Earth Sci.202191112
    [Google Scholar]
  45. Al-MekhlafiZ.G. Al-ShareedaM.A. ManickamS. MohammedB.A. AlreshidiA. AlazmiM. AlshudukhiJ.S. AlsaffarM. AlsewariA. Chebyshev polynomial-based fog computing scheme supporting pseudonym revocation for 5G-enabled vehicular networks.Electronics202312487210.3390/electronics12040872
    [Google Scholar]
  46. MohamedO.A. MasoodS.H. BhowmikJ.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects.Adv. Manuf.201531425310.1007/s40436‑014‑0097‑7
    [Google Scholar]
  47. AbueiddaD.W. BakirM. Abu Al-RubR.K. BergströmJ.S. SobhN.A. JasiukI. Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures.Mater. Des.201712225526710.1016/j.matdes.2017.03.018
    [Google Scholar]
  48. FerreiraR.T.L. AmatteI.C. DutraT.A. BürgerD. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers.Compos., Part B Eng.20171248810010.1016/j.compositesb.2017.05.013
    [Google Scholar]
  49. NgoT.D. KashaniA. ImbalzanoG. NguyenK.T.Q. HuiD. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.Compos., Part B Eng.201814317219610.1016/j.compositesb.2018.02.012
    [Google Scholar]
  50. MinasC. CarnelliD. TervoortE. StudartA.R. 3D printing of emulsions and foams into hierarchical porous ceramics.Adv. Mater.201628459993999910.1002/adma.201603390 27677912
    [Google Scholar]
  51. MaurathJ. WillenbacherN. 3D printing of open-porous cellular ceramics with high specific strength.J. Eur. Ceram. Soc.201737154833484210.1016/j.jeurceramsoc.2017.06.001
    [Google Scholar]
  52. DerbyB. Additive manufacture of ceramics components by inkjet printing.Engineering20151111312310.15302/J‑ENG‑2015014
    [Google Scholar]
  53. YuQ. Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag.J. Build. Eng.20237310662110.1016/j.jobe.2023.106621
    [Google Scholar]
  54. MuthukrishnanS. KuaH.W. YuL.N. ChungJ.K.H. Fresh properties of cementitious materials containing rice husk ash for construction 3D printing.J. Mater. Civ. Eng.20203280402019510.1061/(ASCE)MT.1943‑5533.0003230
    [Google Scholar]
  55. ZareiyanB. KhoshnevisB. Effects of mixture ingredients on extrudability of concrete in contour crafting.Rapid Prototyping J.201824472273010.1108/RPJ‑01‑2017‑0006
    [Google Scholar]
  56. ZareiyanB. KhoshnevisB. Effects of mixture ingredients on interlayer adhesion of concrete in contour crafting.Rapid Prototyping J.201824358459210.1108/RPJ‑02‑2017‑0029
    [Google Scholar]
  57. FratelloV.S. RaelR. Innovating materials for large scale additive manufacturing: Salt, soil, cement and chardonnay.Cem. Concr. Res.2020134106097
    [Google Scholar]
  58. XuJ. DingL. LoveP.E.D. Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing.Autom. Construct.201776859610.1016/j.autcon.2017.01.010
    [Google Scholar]
  59. LinC. Mass-producible near-body temperature-triggered 4D printed shape memory biocomposites and their application in biomimetic intestinal stents.Compos. B: Eng.202325611062310.1016/j.compositesb.2023.110623
    [Google Scholar]
  60. GuT.F. Design and development of 4D-printed cellulose nanofibers reinforced shape memory polymer composites: Application for self-deforming plant bionic soft grippers.Addit. Manuf.202370103544
    [Google Scholar]
  61. Al-MekhlafiZ.G. Al-ShareedaM.A. ManickamS. MohammedB.A. AlreshidiA. AlazmiM. AlshudukhiJ.S. AlsaffarM. RassemT.H. Efficient authentication scheme for 5G-enabled vehicular networks using fog computing.Sensors.2023237354310.3390/s23073543 37050601
    [Google Scholar]
  62. LimW.S. KimH.W. LeeM.H. ParkH.J. Improved printability of pea protein hydrolysates for protein-enriched 3D printed foods.J. Food Eng.202335011150210.1016/j.jfoodeng.2023.111502
    [Google Scholar]
  63. ArunothayanA.R. NematollahiB. RanadeR. KhayatK.H. SanjayanJ.G. Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete.Cem. Concr. Compos.2022125104281
    [Google Scholar]
  64. PapachristoforouM. MitsopoulosV. StefanidouM. Use of by-products for partial replacement of 3D printed concrete constituents; rheology, strength and shrinkage performance.Frat. Integrita Strutt.2019135052653610.3221/IGF‑ESIS.50.44
    [Google Scholar]
  65. PandaB. TanM.J. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application.Mater. Lett.201923734835110.1016/j.matlet.2018.11.131
    [Google Scholar]
  66. Chaves FigueiredoS. Romero RodríguezC. AhmedZ.Y. BosD.H. XuY. SaletT.M. ÇopuroğluO. SchlangenE. BosF.P. Mechanical behavior of printed strain hardening cementitious composites.Materials.2020131010.3390/ma13102253 32422886
    [Google Scholar]
  67. PhamL. TranP. SanjayanJ. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance.Constr. Build. Mater.2020250118785
    [Google Scholar]
  68. HouS.D. DuanZ.H. YeT.H. ZouS. XiaoJ.Z. Mechanical properties and pore structure of 3D printed mortar with recycled powder.Constr. Build. Mater.394132068
    [Google Scholar]
  69. Mendoza RealesO.A. DudaP. SilvaE.C.C.M. PaivaM.D.M. FilhoR.D.T. Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes.Constr. Build. Mater.20192199110010.1016/j.conbuildmat.2019.05.174
    [Google Scholar]
  70. LiuZ. LiM. WengY. WongT.N. TanM.J. Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing.Constr. Build. Mater.201919824525510.1016/j.conbuildmat.2018.11.252
    [Google Scholar]
  71. LongW.J. LinC. TaoJ.L. YeT.H. FangY. Printability and particle packing of 3D-printable limestone calcined clay cement composites.Constr. Build. Mater.2021282122647
    [Google Scholar]
  72. ZhangY. ZhangY. LiuG. YangY. WuM. PangB. Fresh properties of a novel 3D printing concrete ink.Constr. Build. Mater.201817426327110.1016/j.conbuildmat.2018.04.115
    [Google Scholar]
  73. LiuX.F. LiQ. WangL. WangF. MaG.W. Systematic approach for printability evaluation and mechanical property optimization of spray-based 3D printed mortar.Cem. Concr. Compos.2022133104688
    [Google Scholar]
  74. PanZ.F. SiD.D. TaoJ.H. XiaoJ.Z. Compressive behavior of 3D printed concrete with different printing paths and concrete ages.Case Stud. Constr. Mater.202318e01949
    [Google Scholar]
  75. BaiM.Y. WuY.C. XiaoJ.Z. DingT. YuK.Q. Fresh properties of a novel 3D printing concrete ink.Constr. Build. Mater.202317426327110.1016/j.jobe.2023.106477
    [Google Scholar]
  76. WuY.W. LiuC. BaiG.L. LiuH.W. MengY.S. WangZ.H. 3D printed concrete with recycled sand: Pore structures and triaxial compression properties.Case Stud. Constr. Mater.2023139105048
    [Google Scholar]
  77. ZouS. XiaoJ.Z. DingT. DuanZ.H. ZhangQ.T. Printability and advantages of 3D printing mortar with 100% recycled sand.Case Stud. Constr. Mater.2021273121699
    [Google Scholar]
  78. ZhangH.H. XiaoJ.Z. Plastic shrinkage and cracking of 3D printed mortar with recycled sand.Constr. Build. Mater.2021302124405
    [Google Scholar]
  79. KazemianA. YuanX. CochranE. KhoshnevisB. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture.Constr. Build. Mater.201714563964710.1016/j.conbuildmat.2017.04.015
    [Google Scholar]
  80. HanY.L. YangZ.H. DingT. XiaoJ.Z. Environmental and economic assessment on 3D printed buildings with recycled concrete.J. Clean. Prod.202127812388410.1016/j.jclepro.2020.123884
    [Google Scholar]
  81. XiaoJ.Z. ZouS. DingT. DuanZ.H. LiuQ. Fiber-reinforced mortar with 100% recycled fine aggregates: A cleaner perspective on 3D printing.J. Clean. Prod.202131912872010.1016/j.jclepro.2021.128720
    [Google Scholar]
  82. WangD.C. XiaoJ.Z. SunB.C. ZhangS.P. PoonC.S. Mechanical properties of 3D printed mortar cured by CO2.Cem. Concr. Compos.2023139105009
    [Google Scholar]
  83. VergaraL.A. PerezJ.F. ColoradoH.A. 3D printing of ordinary Portland cement with waste wood derived biochar obtained from gasification.Case Stud. Constr. Mater.202318e02117
    [Google Scholar]
  84. VoneyV. OdagliaP. BrumaudC. DillenburgerB. HabertG. From casting to 3D printing geopolymers: A proof of concept.Cem. Concr. Res.2021143106374
    [Google Scholar]
  85. NguyenH.T. CrittendenK. WeissL. BardaweelH. Recycle of waste tire rubber in a 3D printed composite with enhanced damping properties.J. Clean. Prod.202236813308510.1016/j.jclepro.2022.133085
    [Google Scholar]
  86. ChenM.X. Rheology and shape stability control of 3D printed calcium sulphoaluminate cement composites containing paper milling sludge.Addit. Manuf.202254102781
    [Google Scholar]
  87. Ghanbari-GhazijahaniT. KasebahadiM. HassanliR. ClassenM. 3D printed honeycomb cellular beams made of composite materials (plastic and timber).Constr. Build. Mater.2022315125541
    [Google Scholar]
  88. VaucherJ. DemongeotA. MichaudV. LeterrierY. Recycling of bottle grade PET: Influence of HDPE contamination on the microstructure and mechanical performance of 3D printed parts.Polymers.20221424550710.3390/polym14245507 36559873
    [Google Scholar]
  89. SkibickiS. PułtorakM. KaszyńskaM. HoffmannM. EkiertE. SiberaD. The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar.Constr. Build. Mater.2022335127443
    [Google Scholar]
  90. LanT. YangS.T. WangM.X. XuM.Q. ChengS.D. ChenZ.Y. Prediction of interfacial tensile bond strength in 3D printed concrete based on a closed-form fracture model.J. Build. Eng.20237010641110.1016/j.jobe.2023.106411
    [Google Scholar]
  91. LiuH.R. XiaoJ.Z. DingT. Flexural performance of 3D-printed composite beams with ECC and recycled fine aggregate concrete: Experimental and numerical analysis.Eng. Struct.2023283115865
    [Google Scholar]
  92. ChristenH. van ZijlG. de VilliersW. Improving building thermal comfort through passive design – An experimental analysis of phase change material 3D printed concrete.J. Clean. Prod.202339213624710.1016/j.jclepro.2023.136247
    [Google Scholar]
  93. PandaB. LimJ.H. TanM.J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction.Compos., Part B Eng.201916556357110.1016/j.compositesb.2019.02.040
    [Google Scholar]
  94. ChenY. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture.Cem. Concr. Res.2020132106040
    [Google Scholar]
  95. KristiawanR.B. RusdyantoB. ImaduddinF. AriawanD. Glass Powder additive on recycled polypropylene filaments: A sustainable material in 3D printing.Polymers2021141510.3390/polym14010005 35012028
    [Google Scholar]
  96. MarkinV. KrauseM. OttoJ. SchröflC. MechtcherineV. 3D-printing with foam concrete: From material design and testing to application and sustainability.J. Build. Eng.20214310287010.1016/j.jobe.2021.102870
    [Google Scholar]
  97. ZhaoJ.H. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment.J. Clean. Prod.202130712708510.1016/j.jclepro.2021.127085
    [Google Scholar]
  98. PassuelloA. RodríguezE.D. HirtE. LonghiM. BernalS.A. ProvisJ.L. KirchheimA.P. Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators.J. Clean. Prod.201716668068910.1016/j.jclepro.2017.08.007
    [Google Scholar]
  99. de AzevedoA.R.G. MarvilaM.T. AliM. KhanM.I. MasoodF. VieiraC.M.F. Effect of the addition and processing of glass polishing waste on the durability of geopolymeric mortars.Case Stud. Constr. Mater.202115e00662
    [Google Scholar]
  100. YaoY. HuM. Di MaioF. CucurachiS. Life cycle assessment of 3D printing geo‐polymer concrete: An ex‐ante study.J. Ind. Ecol.202024111612710.1111/jiec.12930
    [Google Scholar]
  101. IlcanH. SahinO. KulA. YildirimG. SahmaranM. Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing.Constr. Build. Mater.2022328127114
    [Google Scholar]
  102. PandaB. PaulS.C. HuiL.J. TayY.W.D. TanM.J. Additive manufacturing of geopolymer for sustainable built environment.J. Clean. Prod.201716728128810.1016/j.jclepro.2017.08.165
    [Google Scholar]
  103. PandaB. SinghG.V.P.B. UnluerC. TanM.J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing.J. Clean. Prod.201922061061910.1016/j.jclepro.2019.02.185
    [Google Scholar]
  104. ZhangD.W. WangD. LinX.Q. ZhangT. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes.Constr. Build. Mater.201818457558010.1016/j.conbuildmat.2018.06.233
    [Google Scholar]
  105. PandaB. PaulS.C. MohamedN.A.N. TayY.W.D. TanM.J. Measurement of tensile bond strength of 3D printed geopolymer mortar.Measurement201811310811610.1016/j.measurement.2017.08.051
    [Google Scholar]
  106. MohammedB.A. Al-ShareedaM.A. ManickamS. Al-MekhlafiZ.G. AlreshidiA. AlazmiM. AlshudukhiJ.S. AlsaffarM. FC-PA: Fog computing-based pseudonym authentication scheme in 5G-enabled vehicular networks.IEEE Access202311185711858110.1109/ACCESS.2023.3247222
    [Google Scholar]
  107. WangL. XiaoW. WangQ. JiangH.L. MaG.W. Freeze-thaw resistance of 3D-printed composites with desert sand.Cem. Concr. Compos.2022133104693
    [Google Scholar]
  108. BaiG. WangL. MaG.W. SanjayanJ. BaiM. 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates.Cem. Concr. Compos.2021120104037
    [Google Scholar]
  109. CaiR.J. WenW. WangK. PengY. AhziS. ChinestaF. Tailoring interfacial properties of 3D-printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods.Mater. Today Commun.202232103985
    [Google Scholar]
  110. KumarS.D. AjithramA. PerumalS. PremkumarR. EkanthamoorthyJ. Investigation on natural plant powder reinforced 3D printed composite absorption properties.Mater. Today Proc.2023
    [Google Scholar]
  111. GodeauX.Y. AndrianandrasanaF.J. VolkovaO. SzczepanskiC.R. ZenerinoA. MontreuilO. GodeauR.P. KuzhirP. GodeauG. Investigation on dung beetle’s (Heliocopris Hope, 1838) chitosan valorisation for hydrogel 3D printing.Int. J. Biol. Macromol.202219917218010.1016/j.ijbiomac.2021.12.077 34971640
    [Google Scholar]
  112. PanP. GengY. HuL. LiuQ. LiuM. ChengM. ChenL. ChenJ. Biologically enhanced 3D printed micro-nano hybrid scaffolds doped with abalone shell for bone regeneration.Adv. Compos. Hybrid Mater.2023611010.1007/s42114‑022‑00593‑1
    [Google Scholar]
/content/journals/eng/10.2174/0118722121271917231009070723
Loading
/content/journals/eng/10.2174/0118722121271917231009070723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test