Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Observational studies suggest an association between the immune system and type 2 diabetes. The present study sought to ascertain the causal relationship between BDH1 and type 2 diabetes and investigate whether immunocytes mediate this relationship.

Methods

Appropriate single nucleotide polymorphisms (SNPs) were carefully selected from publicly available GWAS databases based on rigorous criteria to ensure the validity of the Mendelian randomization (MR) analysis. Inverse variance weighting (IVW) was employed as the primary approach for assessing effect sizes, supplemented by four sensitivity analysis techniques: weighted median, simple mode, weighted mode, and MR-Egger regression tests, all aimed at ensuring the robustness and reliability of the IVW results. Reverse MR was conducted to confirm the feasibility of the mediation analysis. Lastly, Cochran’s Q test, MR Egger intercept regression, and MR-PRESSO analysis were utilized to examine heterogeneity and horizontal pleiotropy.

Results

The expression of BDH1 is inversely associated with the risk of type 2 diabetes, with an odds ratio of 0.97 (95% CI: 0.95-0.99). IgD+ CD38+ B cell absolute count (20.7%), HLA DR on dendritic cell (18.7%), BAFF-R on CD20- CD38- B cell (9.5%), CD25 on IgD+ CD24+ B cell (4.1%), and BAFF-R on IgD+ B cell (3.4%), all exhibit certain mediating effects, whereas IgD+ CD38+ B cell absolute count, activated and resting CD4 regulatory T cell %, CD4+ T cell, transitional B cell absolute count, CD28- CD8 dim T cell absolute count, CD45 on HLA DR+ CD8+ T cell, FSC-A on HLA DR+ natural killer, and SSC-A on plasmacytoid dendritic cell exert masking effects.

Conclusion

The findings indicate that immunocytes could serve as a crucial mediating mechanism through which BDH1 exerts its protective effect against type 2 diabetes, offering novel insights for the prevention and therapeutic management of the disease.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303380282250225071730
2025-05-19
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303380282.html?itemId=/content/journals/emiddt/10.2174/0118715303380282250225071730&mimeType=html&fmt=ahah

References

  1. ZhangY.Y. GuiJ. ChenB.X. WanQ. Correlation of renal function indicators and vascular damage in T2DM patients with normal renal function.Front. Endocrinol.202314129239710.3389/fendo.2023.129239738164493
    [Google Scholar]
  2. JamesD.E. StöckliJ. BirnbaumM.J. The aetiology and molecular landscape of insulin resistance.Nat. Rev. Mol. Cell Biol.2021221175177110.1038/s41580‑021‑00390‑634285405
    [Google Scholar]
  3. YaribeygiH. FarrokhiF.R. ButlerA.E. SahebkarA. Insulin resistance: Review of the underlying molecular mechanisms.J. Cell. Physiol.201923468152816110.1002/jcp.2760330317615
    [Google Scholar]
  4. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  5. ZhouB. LuY. HajifathalianK. BenthamJ. CesareD.M. DanaeiG. BixbyH. CowanM.J. AliM.K. TaddeiC. LoW.C. Reis-SantosB. StevensG.A. RileyL.M. MirandaJ.J. BjerregaardP. RiveraJ.A. FouadH.M. MaG. MbanyaJ.C. McGarveyS.T. MohanV. OnatA. PilavA. RamachandranA. RomdhaneH.B. PaciorekC.J. BennettJ.E. EzzatiM. AbdeenZ.A. KadirA.K. Abu-RmeilehN.M. Acosta-CazaresB. AdamsR. AekplakornW. Aguilar-SalinasC.A. AgyemangC. AhmadvandA. Al-OthmanA.R. AlkerwiA. AmouyelP. AmuzuA. AndersenL.B. AnderssenS.A. AnjanaR.M. Aounallah-SkhiriH. ArisT. ArlappaN. ArveilerD. AssahF.K. AvdicováM. AziziF. BalakrishnaN. BandoszP. BarbagalloC.M. BarcelóA. BatiehaA.M. BaurL.A. RomdhaneH.B. BenetM. Bernabe-OrtizA. BharadwajS. BhargavaS.K. BiY. BjerregaardP. BjertnessE. BjertnessM.B. BjörkelundC. BlokstraA. BoS. BoehmB.O. BoissonnetC.P. BovetP. BrajkovichI. BreckenkampJ. BrennerH. BrewsterL.M. BrianG.R. BrunoG. BuggeA. Cabrera de LeónA. CanG. CândidoA.P. CapuanoV. CarlssonA.C. CarvalhoM.J. CasanuevaF.F. CasasJ.P. CasertaC.A. CastetbonK. ChamukuttanS. ChaturvediN. ChenC.J. ChenF. ChenS. ChengC.Y. ChetritA. ChiouS.T. ChoY. ChudekJ. CifkovaR. ClaessensF. ConcinH. CooperC. CooperR. CostanzoS. CottelD. CowellC. CrujeirasA.B. D’ArrigoG. DallongevilleJ. DanknerR. DauchetL. GaetanoD.G. HenauwD.S. DeepaM. DehghanA. DeschampsV. DhanaK. CastelnuovoD.A.F. DjalaliniaS. DouaK. DrygasW. DuY. DzerveV. EgbagbeE.E. EggertsenR. AtiE.J. ElosuaR. ErasmusR.T. EremC. ErgorG. EriksenL. Escobedo-de la PeñaJ. FallC.H. FarzadfarF. Felix-RedondoF.J. FergusonT.S. Fernández-BergésD. FerrariM. FerreccioC. FeskensE.J. FinnJ.D. FögerB. FooL.H. ForslundA.S. FouadH.M. FrancisD.K. MdoF.C. FrancoO.H. FronteraG. FurusawaT. GaciongZ. GarnettS.P. GaspozJ.M. GasullM. GatesL. GeleijnseJ.M. GhasemianA. GhimireA. GiampaoliS. GianfagnaF. GiovannelliJ. GiwercmanA. GrossM.G. RivasG.J.P. GorbeaM.B. GottrandF. GrafnetterD. GrodzickiT. GrøntvedA. GrudenG. GuD. GuanO.P. GuerreroR. GuessousI. GuimaraesA.L. GutierrezL. HambletonI.R. HardyR. KumarH.R. HataJ. HeJ. HeidemannC. HerralaS. HihtaniemiI.T. HoS.Y. HoS.C. HofmanA. HormigaC.M. HortaB.L. HoutiL. HowittC. HtayT.T. HtetA.S. HtikeM.M. HuY. HussieniA.S. HuybrechtsI. HwallaN. IacovielloL. IannoneA.G. IbrahimM.M. IkedaN. IkramM.A. IrazolaV.E. IslamM. IwasakiM. JacobsJ.M. JafarT. JamilK.M. JasienskaG. JiangC.Q. JonasJ.B. JoshiP. KafatosA. Kalter-LeiboviciO. KasaeianA. KatzJ. KaurP. KavousiM. Keinänen-KiukaanniemiS. KelishadiR. KengneA.P. KerstingM. KhaderY.S. KhaliliD. KhangY.H. KiechlS. KimJ. KolsterenP. KorrovitsP. KratzerW. KromhoutD. KujalaU.M. KulaK. KyobutungiC. LaatikainenT. LachatC. LaidY. LamT.H. LandroveO. LanskaV. LappasG. LaxmaiahA. LeclercqC. LeeJ. LeeJ. LehtimäkiT. LekhrajR. León-MuñozL.M. LiY. LimW.Y. Lima-CostaM.F. LinH.H. LinX. LissnerL. LorbeerR. LozanoJ.E. LuksieneD. LundqvistA. LytsyP. MaG. Machado-CoelhoG.L. MachiS. MaggiS. MaglianoD.J. MakdisseM. RaoM.K. ManiosY. ManzatoE. MargozziniP. Marques-VidalP. MartorellR. MasoodiS.R. MathiesenE.B. MatshaT.E. MbanyaJ.C. McFarlaneS.R. McGarveyS.T. McLachlanS. McNultyB.A. Mediene-BenchekorS. MeirhaegheA. MenezesA.M. MeratS. MeshramI.I. MiJ. MiquelJ.F. MirandaJ.J. MohamedM.K. MohammadK. MohammadifardN. MohanV. YusoffM.M.F. MøllerN.C. MolnárD. MondoC.K. MorejonA. MorenoL.A. MorganK. MoschonisG. MossakowskaM. MostafaA. MotaJ. MottaJ. MuT.T. MuiesanM.L. Müller-NurasyidM. MursuJ. NagelG. NámešnáJ. NangE.E. NangThetiaV.B. Navarrete-MuñozE.M. NdiayeN.C. NenkoI. NerviF. NguyenN.D. NguyenQ.N. Nieto-MartínezR.E. NingG. NinomiyaT. NoaleM. NotoD. NsourM.A. Ochoa-AvilésA.M. OhK. OnatA. OrdunezP. OsmondC. OteroJ.A. Owusu-DaboE. PahomovaE. PalmieriL. Panda-JonasS. PanzaF. ParsaeianM. PeixotoS.V. PelletierC. PeltonenM. PetersA. PeykariN. PhamS.T. PilavA. PitakakaF. PiwonskaA. PiwonskiJ. Plans-RubióP. PortaM. PortegiesM.L. PoustchiH. PradeepaR. PriceJ.F. PunabM. QasrawiR.F. QorbaniM. RadisauskasR. RahmanM. RaitakariO. RaoS.R. RamachandranA. RamkeJ. RamosR. RampalS. RathmannW. RedonJ. ReganitP.F. RigoF. RobinsonS.M. RobitailleC. Rodríguez-ArtalejoF. Rodriguez-Perez MdelC. Rodríguez-VillamizarL.A. Rojas-MartinezR. RonkainenK. RosengrenA. RubinsteinA. RuiO. Ruiz-BetancourtB.S. HorimotoR.R.V. RutkowskiM. SabanayagamC. SachdevH.S. SaidiO. SakaryaS. SalanaveB. SalonenJ.T. SalvettiM. Sánchez-AbantoJ. SantosD. SantosD.R.N. SantosR. SaramiesJ.L. SardinhaL.B. SarrafzadeganN. SaumK.U. ScazufcaM. SchargrodskyH. Scheidt-NaveC. SeinA.A. SharmaS.K. ShawJ.E. ShibuyaK. ShinY. ShiriR. SiantarR. SibaiA.M. SimonM. SimonsJ. SimonsL.A. SjostromM. Slowikowska-HilczerJ. SlusarczykP. SmeethL. SnijderM.B. SoH.K. SobngwiE. SöderbergS. SolfrizziV. SonestedtE. SoumareA. StaessenJ.A. StathopoulouM.G. Steene-JohannessenJ. StehleP. SteinA.D. StessmanJ. StöcklD. StokwiszewskiJ. StronksK. StrufaldiM.W. SunC.A. SundströmJ. SungY.T. SuriyawongpaisalP. SyR.G. TaiE.S. TamosiunasA. TangL. TarawnehM. Tarqui-MamaniC.B. TaylorA. TheobaldH. ThijsL. ThuesenB.H. TolonenH.K. TolstrupJ.S. TopbasM. TorrentM. TraissacP. TrinhO.T. Tulloch-ReidM.K. TuomainenT.P. TurleyM.L. TzourioC. UedaP. UkoliF.A. UlmerH. UusitaloH.M. ValdiviaG. ValviD. RossemV.L. ValkengoedV.I.G. VanderschuerenD. VanuzzoD. VegaT. Velasquez-MelendezG. VeronesiG. VerschurenW.M. VerstraetenR. VietL. VioqueJ. VirtanenJ.K. Visvikis-SiestS. ViswanathanB. VollenweiderP. VoutilainenS. VrijheidM. WadeA.N. WagnerA. WaltonJ. MohamudW.W.N. WangF. WangM.D. WangQ. WangY.X. WannametheeS.G. WeerasekeraD. WhincupP.H. WidhalmK. WiecekA. WijgaA.H. WilksR.J. WilleitJ. WilsgaardT. WojtyniakB. WongT.Y. WooJ. WoodwardM. WuF.C. WuS.L. XuH. YanW. YangX. YeX. YoshiharaA. Younger-ColemanN.O. ZambonS. ZargarA.H. ZdrojewskiT. ZhaoW. ZhengY. CisnerosZ.J. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants.Lancet2016387100271513153010.1016/S0140‑6736(16)00618‑827061677
    [Google Scholar]
  6. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment.Lancet Diabetes Endocrinol.20142863464710.1016/S2213‑8587(14)70102‑024842598
    [Google Scholar]
  7. MaglianoD.J. IslamR.M. BarrE.L.M. GreggE.W. PavkovM.E. HardingJ.L. TabeshM. KoyeD.N. ShawJ.E. Trends in incidence of total or type 2 diabetes: Systematic review.BMJ2019366l500310.1136/bmj.l500331511236
    [Google Scholar]
  8. LeyS.H. HamdyO. MohanV. HuF.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies.Lancet201438399331999200710.1016/S0140‑6736(14)60613‑924910231
    [Google Scholar]
  9. StandlE. KhuntiK. HansenT.B. SchnellO. The global epidemics of diabetes in the 21st century: Current situation and perspectives.Eur. J. Prev. Cardiol.2019262_suppl71410.1177/204748731988102131766915
    [Google Scholar]
  10. WongN.D. SattarN. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention.Nat. Rev. Cardiol.2023201068569510.1038/s41569‑023‑00877‑z37193856
    [Google Scholar]
  11. HackettR.A. SteptoeA. Type 2 diabetes mellitus and psychological stress — a modifiable risk factor.Nat. Rev. Endocrinol.201713954756010.1038/nrendo.2017.6428664919
    [Google Scholar]
  12. HariharanR. OdjidjaE.N. ScottD. ShivappaN. HébertJ.R. HodgeA. CourtenD.B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases.Obes. Rev.2022231e1334910.1111/obr.1334934708499
    [Google Scholar]
  13. StringhiniS. TabakA.G. AkbaralyT.N. SabiaS. ShipleyM.J. MarmotM.G. BrunnerE.J. BattyG.D. BovetP. KivimäkiM. Contribution of modifiable risk factors to social inequalities in type 2 diabetes: Prospective Whitehall II cohort study.BMJ20123451e545210.1136/bmj.e545222915665
    [Google Scholar]
  14. BornéY. SmithJ.G. NilssonP.M. MelanderO. HedbladB. EngströmG. Total and differential leukocyte counts in relation to incidence of diabetes mellitus: A prospective population-based cohort study.PLoS One2016112e014896310.1371/journal.pone.014896326891449
    [Google Scholar]
  15. GirardD. VandiedonckC. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications.Front. Cardiovasc. Med.2022999171610.3389/fcvm.2022.99171636247456
    [Google Scholar]
  16. ZhangH. YangZ. ZhangW. NiuY. LiX. QinL. SuQ. White blood cell subtypes and risk of type 2 diabetes.J. Diab. Complicat.2017311313710.1016/j.jdiacomp.2016.10.02927863973
    [Google Scholar]
  17. LuS. LiY. QianZ. ZhaoT. FengZ. WengX. YuL. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus.Front. Immunol.202314105275610.3389/fimmu.2023.105275636993972
    [Google Scholar]
  18. PanA. SunX.M. HuangF.Q. LiuJ.F. CaiY.Y. WuX. AlolgaR.N. LiP. LiuB.L. LiuQ. QiL.W. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production.Nat. Commun.202213138610.1038/s41467‑022‑28044‑x35046401
    [Google Scholar]
  19. HanF. ZhaoH. LuJ. YunW. YangL. LouY. SuD. ChenX. ZhangS. JinH. LiX. SunJ. HuangH. WangQ. JiangX. Anti-tumor effects of bdh1 in acute myeloid leukemia.Front. Oncol.20211169459410.3389/fonc.2021.69459434150668
    [Google Scholar]
  20. OtsukaH. KimuraT. AgoY. NakamaM. AoyamaY. AbdelkreemE. MatsumotoH. OhnishiH. SasaiH. OsawaM. YamaguchiS. MitchellG.A. FukaoT. Deficiency of 3-hydroxybutyrate dehydrogenase (BDH1) in mice causes low ketone body levels and fatty liver during fasting.J. Inherit. Metab. Dis.202043596096810.1002/jimd.1224332279332
    [Google Scholar]
  21. LuJ. HuZ.B. ChenP.P. LuC.C. ZhangJ.X. LiX.Q. YuanB.Y. HuangS.J. MaK.L. Urinary podocyte microparticles are associated with disease activity and renal injury in systemic lupus erythematosus.BMC Nephrol.201920130310.1186/s12882‑019‑1482‑z31382919
    [Google Scholar]
  22. LinJ. RenQ. ZhangF. GuiJ. XiangX. WanQ. D-β-hydroxybutyrate dehydrogenase mitigates diabetes-induced atherosclerosis through the activation of nrf2.Thromb. Haemost.2023123101003101510.1055/s‑0043‑177098537399841
    [Google Scholar]
  23. SmithD.G. EbrahimS. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?Int. J. Epidemiol.200332112210.1093/ije/dyg07012689998
    [Google Scholar]
  24. WangZ. LuJ. HuJ. Association between antihypertensive drugs and hepatocellular carcinoma: A trans-ancestry and drug-target Mendelian randomization study.Liver Int.20234361320133110.1111/liv.1556637005366
    [Google Scholar]
  25. LevinM.G. BurgessS. Mendelian randomization as a tool for cardiovascular research.JAMA Cardiol.202491798910.1001/jamacardio.2023.411537938820
    [Google Scholar]
  26. BowdenJ. HolmesM.V. Meta-analysis and mendelian randomization: A review.Res. Synth. Methods201910448649610.1002/jrsm.134630861319
    [Google Scholar]
  27. VõsaU. ClaringbouldA. WestraH.J. BonderM.J. DeelenP. ZengB. KirstenH. SahaA. KreuzhuberR. YazarS. BruggeH. OelenR. VriesD.D.H. WijstD.V.M.G.P. KaselaS. PervjakovaN. AlvesI. FavéM.J. AgbessiM. ChristiansenM.W. JansenR. SeppäläI. TongL. TeumerA. SchrammK. HemaniG. VerlouwJ. YaghootkarH. FlitmanS.R. BrownA. KukushkinaV. KalnapenkisA. RüegerS. PorcuE. KronbergJ. KettunenJ. LeeB. ZhangF. QiT. HernandezJ.A. ArindrartoW. BeutnerF. ’t HoenP.A.C. MeursV.J. DongenV.J. ItersonV.M. SwertzM.A. BonderJ.M. DmitrievaJ. ElansaryM. FairfaxB.P. GeorgesM. HeijmansB.T. HewittA.W. KähönenM. KimY. KnightJ.C. KovacsP. KrohnK. LiS. LoefflerM. MarigortaU.M. MeiH. MomozawaY. Müller-NurasyidM. NauckM. NivardM.G. PenninxB.W.J.H. PritchardJ.K. RaitakariO.T. RotzschkeO. SlagboomE.P. StehouwerC.D.A. StumvollM. SullivanP. ’t HoenP.A.C. ThieryJ. TönjesA. DongenV.J. ItersonV.M. VeldinkJ.H. VölkerU. WarmerdamR. WijmengaC. SwertzM. AndiappanA. MontgomeryG.W. RipattiS. PerolaM. KutalikZ. DermitzakisE. BergmannS. FraylingT. MeursV.J. ProkischH. AhsanH. PierceB.L. LehtimäkiT. BoomsmaD.I. PsatyB.M. GharibS.A. AwadallaP. MilaniL. OuwehandW.H. DownesK. StegleO. BattleA. VisscherP.M. YangJ. ScholzM. PowellJ. GibsonG. EskoT. FrankeL. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression.Nat. Genet.20215391300131010.1038/s41588‑021‑00913‑z34475573
    [Google Scholar]
  28. OrrùV. SteriM. SidoreC. MarongiuM. SerraV. OllaS. SoleG. LaiS. DeiM. MulasA. VirdisF. PirasM.G. LobinaM. MarongiuM. PitzalisM. DeiddaF. LoizeddaA. OnanoS. ZoledziewskaM. SawcerS. DevotoM. GorospeM. AbecasisG.R. FlorisM. PalaM. SchlessingerD. FiorilloE. CuccaF. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy.Nat. Genet.202052101036104510.1038/s41588‑020‑0684‑432929287
    [Google Scholar]
  29. SakaueS. KanaiM. TanigawaY. KarjalainenJ. KurkiM. KoshibaS. NaritaA. KonumaT. YamamotoK. AkiyamaM. IshigakiK. SuzukiA. SuzukiK. ObaraW. YamajiK. TakahashiK. AsaiS. TakahashiY. SuzukiT. ShinozakiN. YamaguchiH. MinamiS. MurayamaS. YoshimoriK. NagayamaS. ObataD. HigashiyamaM. MasumotoA. KoretsuneY. ItoK. TeraoC. YamauchiT. KomuroI. KadowakiT. TamiyaG. YamamotoM. NakamuraY. KuboM. MurakamiY. YamamotoK. KamataniY. PalotieA. RivasM.A. DalyM.J. MatsudaK. OkadaY. FinnGen A cross-population atlas of genetic associations for 220 human phenotypes.Nat. Genet.202153101415142410.1038/s41588‑021‑00931‑x34594039
    [Google Scholar]
  30. LiP. WangH. GuoL. GouX. ChenG. LinD. FanD. GuoX. LiuZ. Association between gut microbiota and preeclampsia-eclampsia: A two-sample Mendelian randomization study.BMC Med.202220144310.1186/s12916‑022‑02657‑x36380372
    [Google Scholar]
  31. BowdenJ. Del Greco MF. MinelliC. ZhaoQ. LawlorD.A. SheehanN.A. ThompsonJ. SmithD.G. Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption.Int. J. Epidemiol.201948372874210.1093/ije/dyy25830561657
    [Google Scholar]
  32. YeC.J. LiuD. ChenM.L. KongL.J. DouC. WangY.Y. XuM. XuY. LiM. ZhaoZ.Y. ZhengR.Z. ZhengJ. LuJ.L. ChenY.H. NingG. WangW.Q. BiY.F. WangT.G. Mendelian randomization evidence for the causal effect of mental well-being on healthy aging.Nat. Hum. Behav.2024891798180910.1038/s41562‑024‑01905‑938886532
    [Google Scholar]
  33. VerbanckM. ChenC.Y. NealeB. DoR. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases.Nat. Genet.201850569369810.1038/s41588‑018‑0099‑729686387
    [Google Scholar]
  34. VanderWeeleT.J. Mediation analysis: A practitioner’s guide.Annu. Rev. Public Health2016371173210.1146/annurev‑publhealth‑032315‑02140226653405
    [Google Scholar]
  35. LehningerA.L. SudduthH.C. WiseJ.B. D-beta-Hydroxybutyric dehydrogenase of muitochondria.J. Biol. Chem.196023582450245510.1016/S0021‑9258(18)64641‑114415394
    [Google Scholar]
  36. WangW. IshibashiJ. TrefelyS. ShaoM. CowanA.J. SakersA. LimH.W. O’ConnorS. DoanM.T. CohenP. BaurJ.A. KingM.T. VeechR.L. WonK.J. RabinowitzJ.D. SnyderN.W. GuptaR.K. SealeP. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate.Cell Metab.2019301174189.e510.1016/j.cmet.2019.05.00531155495
    [Google Scholar]
  37. KadirA.A. ClarkeK. EvansR.D. Cardiac ketone body metabolism.Biochim. Biophys. Acta Mol. Basis Dis.20201866616573910.1016/j.bbadis.2020.16573932084511
    [Google Scholar]
  38. FulghumK.L. SmithJ.B. CharikerJ. GarrettL.F. BrittianK.R. LorkiewiczP.K. McNallyL.A. UchidaS. JonesS.P. HillB.G. CollinsH.E. Metabolic signatures of pregnancy-induced cardiac growth.Am. J. Physiol. Heart Circ. Physiol.20223231H146H16410.1152/ajpheart.00105.202235622533
    [Google Scholar]
  39. KhosraviM. PoursalehA. GhasempourG. FarhadS. NajafiM. The effects of oxidative stress on the development of atherosclerosis.Biol. Chem.2019400671173210.1515/hsz‑2018‑039730864421
    [Google Scholar]
  40. MondaA. TorreM.E. MessinaA. Exploring the ketogenic diet's potential in reducing neuroinflammation and modulating immune responses.Front. Immunol.202415142581610.3389/fimmu.2024.1425816
    [Google Scholar]
  41. ZhuangH. RenX. ZhangY. LiH. ZhouP. H Z β-Hydroxybutyrate enhances chondrocyte mitophagy and reduces cartilage degeneration in osteoarthritis via the HCAR2/AMPK/PINK1/Parkin pathway.Aging Cell20242311e1429410.1111/acel.14294
    [Google Scholar]
  42. LudaK.M. LongoJ. Kitchen-GoosenS.M. DuimstraL.R. MaE.H. WatsonM.J. OswaldB.M. FuZ. MadajZ. KupaiA. DicksonB.M. DeCampL.M. DahabiehM.S. ComptonS.E. TeisR. KaymakI. LauK.H. KellyD.P. PuchalskaP. WilliamsK.S. KrawczykC.M. LévesqueD. BoisvertF.M. SheldonR.D. RothbartS.B. CrawfordP.A. JonesR.G. Ketolysis drives CD8 + T cell effector function through effects on histone acetylation.Immunity202356920212035.e810.1016/j.immuni.2023.07.00237516105
    [Google Scholar]
  43. ZhangH. TangK. MaJ. ZhouL. LiuJ. ZengL. ZhuL. XuP. ChenJ. WeiK. LiangX. LvJ. XieJ. LiuY. WanY. HuangB. Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8 + T-cell memory development.Nat. Cell Biol.2020221182510.1038/s41556‑019‑0440‑031871320
    [Google Scholar]
  44. American Diabetes Association. Standards of medical care in diabetes—2011.Diabetes Care.201234Suppl 1S11S6110.2337/dc12‑s011
    [Google Scholar]
  45. GoldbergR.B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications.J. Clin. Endocrinol. Metab.20099493171318210.1210/jc.2008‑253419509100
    [Google Scholar]
  46. StentzF. KitabchiA. Activated T lymphocytes in Type 2 diabetes: Implications from in vitro studies.Curr. Drug Targets20034649350310.2174/138945003349096612866664
    [Google Scholar]
  47. McLaughlinT. LiuL.F. LamendolaC. ShenL. MortonJ. RivasH. WinerD. TolentinoL. ChoiO. ZhangH. ChngH.Y.M. EnglemanE. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans.Arterioscler. Thromb. Vasc. Biol.201434122637264310.1161/ATVBAHA.114.30463625341798
    [Google Scholar]
  48. SireeshD. DhamodharanU. EzhilarasiK. VijayV. RamkumarK.M. Association of NF-E2 Related Factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2 Diabetes Mellitus.Sci. Rep.201881512610.1038/s41598‑018‑22913‑629572460
    [Google Scholar]
  49. NishimuraS. ManabeI. NagasakiM. EtoK. YamashitaH. OhsugiM. OtsuM. HaraK. UekiK. SugiuraS. YoshimuraK. KadowakiT. NagaiR. CD8 + effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity.Nat. Med.200915891492010.1038/nm.196419633658
    [Google Scholar]
  50. BerrouJ. FougerayS. VenotM. ChardinyV. GautierJ.F. DulphyN. ToubertA. PeraldiM.N. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes.PLoS One201384e6241810.1371/journal.pone.006241823638076
    [Google Scholar]
  51. LeeB.C. KimM.S. PaeM. YamamotoY. EberléD. ShimadaT. KameiN. ParkH.S. SasorithS. WooJ.R. YouJ. MosherW. BradyH.J.M. ShoelsonS.E. LeeJ. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity.Cell Metab.201623468569810.1016/j.cmet.2016.03.00227050305
    [Google Scholar]
  52. ZhouT. HuZ. YangS. SunL. YuZ. WangG. Role of adaptive and innate immunity in type 2 diabetes mellitus.J. Diabetes Res.201820181910.1155/2018/745726930533447
    [Google Scholar]
  53. LiJ. NiuQ. WuA. ZhangY. HongL. WangH. Causal relationship between circulating immune cells and the risk of type 2 diabetes: A Mendelian randomization study.Front. Endocrinol.202314121041510.3389/fendo.2023.121041537305035
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303380282250225071730
Loading
/content/journals/emiddt/10.2174/0118715303380282250225071730
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test