Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Aims

The aim of this study is to investigate the expression patterns and regulatory functions of Copines family genes in different cellular subpopulations in testicular cancer based on single-cell data and to analyze the regulatory mechanism of Copines family genes in cancer.

Background

Testicular cancer is a frequently diagnosed male tumor. Emerging evidence suggests that Copines family genes are implicated in a variety of cancer phenotypes and cancer progression. Analyzing the expression pattern of Copines family genes in testicular cancer may help improve the treatment efficacy of the cancer.

Objective

This study sought to characterize the expression profiles of Copines family genes in the cellular subpopulations of testicular cancer and to identify key signaling pathways through which they regulate cancer progression.

Methods

Based on single-cell transcriptomic data of testicular cancer, we classified testicular cancer cell subpopulations and analyzed the expressions of Copines family genes in each subpopulation. Cell subpopulations were grouped according to the expression levels of Copines family genes, and differentially expressed Copines family genes between the groups were screened by differential expression analysis. Functional enrichment analysis on the differentially expressed genes (DEGs) was performed with a clusterprofiler package. Functional pathways enriched by the Copines family genes were calculated by AUCell enrichment score. Copy number variation (CNV) analysis was performed using inferCNV to analyze gene mutation patterns across cellular subpopulations, and pseudotime analysis was conducted using Monocle to infer cellular differentiation pathways of cellular subpopulations.

Results

Single-cell clustering identified four major cell subpopulations, namely, NK/T cells, tumor cells, B cells, and macrophages. Notably, the control samples had a relatively small proportion of tumor cells. Further clustering of the tumor cells identified six cell subpopulations, among which multiple Copines genes, especially CPNE1 and CPNE3, showed a high expression. The testicular cancer samples were grouped by the expression patterns of Copines genes, and the DEGs between groups included GNLY, MGP1, CFD2, CCL21, SPARCL13 as well as some other genes involved in the malignant progression of cancer. Pseudotime analysis showed that the upregulated genes were enriched in cell migration and PI3K-Akt pathway, while the downregulated genes were related to immunity. This indicated that the Copines genes regulated the cellular heterogeneity and malignant transformation in testicular cancer.

Conclusion

This study revealed the potential molecular mechanism through which Copines family genes drove the progression of testicular cancer through regulating PI3K-Akt signaling pathway and cell cycle, providing a new target for the development of precision treatment targeting Copines family genes and prognostic assessment of the cancer.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303375462250430055914
2025-05-06
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303375462.html?itemId=/content/journals/emiddt/10.2174/0118715303375462250430055914&mimeType=html&fmt=ahah

References

  1. NierengartenM.B. Cancer Statistics 2024: Deaths drop, incidences increase, prevention needed.Cancer202413011190410.1002/cncr.3534738757629
    [Google Scholar]
  2. PallottiF. PetrozziA. CargneluttiF. RadicioniA.F. LenziA. PaoliD. LombardoF. Long-term follow up of the erectile function of testicular cancer survivors.Front. Endocrinol.20191019610.3389/fendo.2019.0019631001201
    [Google Scholar]
  3. ClasenS.C. FungC. SessoH.D. TravisL.B. Cardiovascular risks in testicular cancer: Assessment, prevention, and treatment.Curr. Oncol. Rep.202325544545410.1007/s11912‑023‑01375‑836867377
    [Google Scholar]
  4. SiegelR.L. KratzerT.B. GiaquintoA.N. SungH. JemalA. Cancer statistics, 2025.CA Cancer J. Clin.2025751104510.3322/caac.2187139817679
    [Google Scholar]
  5. MaiP.L. ChenB.E. TuckerK. FriedlanderM. PhillipsK.A. HoggD. JewettM.A.S. BodrogiI. GecziL. OlahE. HeimdalK. FossåS.D. NathansonK.L. KordeL. EastonD.F. DudakiaD. HuddartR. StrattonM.R. BishopD.T. RapleyE.A. GreeneM.H. Younger age-at-diagnosis for familial malignant testicular germ cell tumor.Fam. Cancer20098445145610.1007/s10689‑009‑9264‑619609727
    [Google Scholar]
  6. KhanM.R. SheehanP.K. BazinA. LeonardC. AleemU. CorriganL. McDermottR. Late side effects of testicular cancer and treatment: A comprehensive review.Discov. Oncol.202415164610.1007/s12672‑024‑01549‑139532799
    [Google Scholar]
  7. SonkinD. ThomasA. TeicherB.A. Cancer treatments: Past, present, and future.Cancer Genet.2024286-287182410.1016/j.cancergen.2024.06.00238909530
    [Google Scholar]
  8. KernsS.L. FungC. FossaS.D. DinhP.C.Jr MonahanP. SessoH.D. FrisinaR.D. FeldmanD.R. HamiltonR.J. VaughnD. MartinN. HuddartR. KollmannsbergerC. SahasrabudheD. Ardeshir-Rouhani-FardS. EinhornL. TravisL.B. Relationship of cisplatin-related adverse health outcomes with disability and unemployment among testicular cancer survivors.JNCI Cancer Spectr.202044pkaa02210.1093/jncics/pkaa02232704617
    [Google Scholar]
  9. KernsS.L. FungC. MonahanP.O. Ardeshir-Rouhani-FardS. Abu ZaidM.I. WilliamsA.M. StumpT.E. SessoH.D. FeldmanD.R. HamiltonR.J. VaughnD.J. BeardC. HuddartR.A. KimJ. KollmannsbergerC. SahasrabudheD.M. CookR. FossaS.D. EinhornL.H. TravisL.B. Platinum Study Group Cumulative burden of morbidity among testicular cancer survivors after standard cisplatin-based chemotherapy: A multi-institutional study.J. Clin. Oncol.201836151505151210.1200/JCO.2017.77.073529617189
    [Google Scholar]
  10. EinhornL.H. DonohueJ. Cis-diamminedichloroplatinum, vinblastine, and bleomycin combination chemotherapy in disseminated testicular cancer.Ann. Intern. Med.197787329329810.7326/0003‑4819‑87‑3‑29371004
    [Google Scholar]
  11. TangH. PangP. QinZ. ZhaoZ. WuQ. SongS. LiF. The CPNE family and their role in cancers.Front. Genet.20211268909710.3389/fgene.2021.68909734367247
    [Google Scholar]
  12. VozyA. CoutzacC. Colitis induced by immune checkpoint inhibitors: Anti-CTLA-4 antibodies and anti-PD-1/PDL-1 antibodies.Oncologie2016189-1050150810.1007/s10269‑016‑2658‑9
    [Google Scholar]
  13. DingX. JinY. WuY. WuY. WuH. XiongL. SongX. LiuS. FanW. FanM. Localization and cellular distribution of CPNE5 in embryonic mouse brain.Brain Res.20081224202810.1016/j.brainres.2008.05.05118614158
    [Google Scholar]
  14. LiY. LiL. LiuH. ZhouT. CPNE1 silencing inhibits cell proliferation and accelerates apoptosis in human gastric cancer.EUR. J. Pharm. Sci.2022177106278
    [Google Scholar]
  15. CowlandJ.B. CarterD. BjerregaardM.D. JohnsenA.H. BorregaardN. LollikeK. Tissue expression of copines and isolation of copines I and III from the cytosol of human neutrophils.J. Leukoc. Biol.200374337938810.1189/jlb.020308312949241
    [Google Scholar]
  16. WangA. YangW. LiY. ZhangY. ZhouJ. ZhangR. ZhangW. ZhuJ. ZengY. LiuZ. HuangJ. CPNE1 promotes non-small cell lung cancer progression by interacting with RACK1 via the MET signaling pathway.Cell Commun. Signal.20222011610.1186/s12964‑021‑00818‑835101055
    [Google Scholar]
  17. KhvotchevM. SolovievM. Copines, a family of calcium sensor proteins and their role in brain function.Biomolecules202414325510.3390/biom1403025538540677
    [Google Scholar]
  18. ChengL. AlbersP. BerneyD.M. FeldmanD.R. DaugaardG. GilliganT. LooijengaL.H.J. Testicular cancer.Nat. Rev. Dis. Primers2018412910.1038/s41572‑018‑0029‑030291251
    [Google Scholar]
  19. JiangZ. JiangJ. ZhaoB. YangH. WangY. GuoS. DengY. LuD. MaT. WangH. WangJ. CPNE1 silencing inhibits the proliferation, invasion and migration of human osteosarcoma cells.Oncol. Rep.201839264365029207139
    [Google Scholar]
  20. WangY. PanS. HeX. WangY. HuangH. ChenJ. ZhangY. ZhangZ. QinX. CPNE1 enhances colorectal cancer cell growth, glycolysis, and drug resistance through regulating the AKT-GLUT1/HK2 pathway.OncoTargets Ther.20211469971010.2147/OTT.S28421133536762
    [Google Scholar]
  21. StuartT. ButlerA. HoffmanP. HafemeisterC. PapalexiE. MauckW.M.3rd HaoY. StoeckiusM. SmibertP. SatijaR. Comprehensive integration of single-cell data.Cell201917718881902
    [Google Scholar]
  22. ShahrajabianM.H. SunW. Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application Survey on multi-omics, and multi-omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  23. KorsunskyI. MillardN. FanJ. SlowikowskiK. ZhangF. WeiK. BaglaenkoY. BrennerM. LohP. RaychaudhuriS. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods201916121289129610.1038/s41592‑019‑0619‑031740819
    [Google Scholar]
  24. ZulibiyaA. WenJ. YuH. ChenX. XuL. MaX. ZhangB. Single-cell RNA sequencing reveals potential for endothelial- to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.202318661162510.32604/chd.2023.047689
    [Google Scholar]
  25. XuX. HuangY. HanX. Single-nucleus RNA sequencing reveals cardiac macrophage landscape in hypoplastic left heart syndrome.Congenit. Heart Dis.202419223324610.32604/chd.2024.050231
    [Google Scholar]
  26. GuZ. HübschmannD. SimplifyEnrichment : A bioconductor package for clustering and visualizing functional enrichment results.Genomics Proteomics Bioinformatics202321119020210.1016/j.gpb.2022.04.00835680096
    [Google Scholar]
  27. GuoY. LiuX. XuQ. ZhouX. LiuJ. XuY. LuY. LiuH. Revealing the role of honokiol in human glioma cells by RNA-seq analysis.Biocell202448694595810.32604/biocell.2024.049748
    [Google Scholar]
  28. MilovanovićJ. Todorović-RakovićN. VujasinovićT. GreenmanJ. MandušićV. RadulovicM. Can granulysin provide prognostic value in primary breast cancer?Pathol. Res. Pract.202223715403910.1016/j.prp.2022.15403935905663
    [Google Scholar]
  29. MuneerR.S. GrayP.N. Alteration of human breast tumor cell membrane functions by chromosome-mediated gene transfer.J. Supramol. Struct.197912335536710.1002/jss.400120307232736
    [Google Scholar]
  30. del Molino del BarrioI. MeesonA. CookeK. MalkiM.I. Barron-MillarB. KirbyJ.A. AliS. Contribution of heparan sulphate binding in CCL21-mediated migration of breast cancer cells.Cancers20211314346210.3390/cancers1314346234298676
    [Google Scholar]
  31. LiuH. DongA. RastehA.M. WangP. WengJ. Identification of the novel exhausted T cell CD8+ markers in breast cancer.Sci. Rep.20241411914210.1038/s41598‑024‑70184‑139160211
    [Google Scholar]
  32. CreutzC.E. TomsigJ.L. SnyderS.L. GautierM.C. SkouriF. BeissonJ. CohenJ. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans.J. Biol. Chem.199827331393140210.1074/jbc.273.3.13939430674
    [Google Scholar]
  33. LiuS. TangH. ZhuJ. DingH. ZengY. DuW. DingZ. SongP. ZhangY. LiuZ. HuangJ.A. High expression of Copine-1 promotes cell growth and metastasis in human lung adenocarcinoma.Int. J. Oncol.20185362369237810.3892/ijo.2018.455830221693
    [Google Scholar]
  34. LiangJ. ZhangJ. RuanJ. MiY. HuQ. WangZ. WeiB. CPNE1 is a useful prognostic marker and is associated with TNF receptor-associated factor 2 (TRAF2) expression in prostate cancer.Med. Sci. Monit.2017235504551410.12659/MSM.90472029151113
    [Google Scholar]
  35. ParkN. YooJ.C. LeeY.S. ChoiH.Y. HongS.G. HwangE.M. ParkJ.Y. Copine1 C2 domains have a critical calcium-independent role in the neuronal differentiation of hippocampal progenitor HiB5 cells.Biochem. Biophys. Res. Commun.2014454122823310.1016/j.bbrc.2014.10.07525450385
    [Google Scholar]
  36. SunB. LiY. ZhouY. NgT.K. ZhaoC. GanQ. GuX. XiangJ. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer.J. Cell. Physiol.201923421416142510.1002/jcp.2693630078189
    [Google Scholar]
  37. ThomasG. JacobsK.B. YeagerM. KraftP. WacholderS. OrrN. YuK. ChatterjeeN. WelchR. HutchinsonA. CrenshawA. Cancel-TassinG. StaatsB.J. WangZ. Gonzalez-BosquetJ. FangJ. DengX. BerndtS.I. CalleE.E. FeigelsonH.S. ThunM.J. RodriguezC. AlbanesD. VirtamoJ. WeinsteinS. SchumacherF.R. GiovannucciE. WillettW.C. CussenotO. ValeriA. AndrioleG.L. CrawfordE.D. TuckerM. GerhardD.S. FraumeniJ.F.Jr HooverR. HayesR.B. HunterD.J. ChanockS.J. Multiple loci identified in a genome-wide association study of prostate cancer.Nat. Genet.200840331031510.1038/ng.9118264096
    [Google Scholar]
  38. MoW. ZhangJ. LiX. MengD. GaoY. YangS. WanX. ZhouC. GuoF. HuangY. AmenteS. AvvedimentoE.V. XieY. LiY. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer.PLoS One201382e5659210.1371/journal.pone.005659223451058
    [Google Scholar]
  39. ChoiH.Y. ParkN. NaJ.B. KoE.S. ParkJ.Y. YooJ.C. Direct binding of Copine3 with Jab1 activates downstream ErbB2 signaling and motility in SKBr3 breast cancer cells.Oncol. Rep.20163521147115210.3892/or.2015.447226719032
    [Google Scholar]
  40. LinH. ZhangX. LiaoL. YuT. LiJ. PanH. LiuL. KongH. SunL. YanM. YaoM. CPNE3 promotes migration and invasion in non-small cell lung cancer by interacting with RACK1 via FAK signaling activation.J. Cancer20189224215422210.7150/jca.2587230519322
    [Google Scholar]
  41. ZhangL. YuX. ZhengL. ZhangY. LiY. FangQ. GaoR. KangB. ZhangQ. HuangJ.Y. KonnoH. GuoX. YeY. GaoS. WangS. HuX. RenX. ShenZ. OuyangW. ZhangZ. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.Nature2018564773526827210.1038/s41586‑018‑0694‑x30479382
    [Google Scholar]
  42. YoshimuraK. TakeuchiK. NagasakiK. OgishimaS. TanakaH. IwaseT. AkiyamaF. KurodaY. MikiY. Prognostic value of matrix Gla protein in breast cancer.Mol. Med. Rep.20092454955321475864
    [Google Scholar]
  43. LevedakouE.N. StrohmeyerT.G. EffertP.J. LiuE.T. Expression of the matrix Gla protein in urogenital malignancies.Int. J. Cancer199252453453710.1002/ijc.29105204061399132
    [Google Scholar]
  44. MertschS. SchurgersL.J. WeberK. PaulusW. SennerV. Matrix gla protein (MGP): An overexpressed and migration-promoting mesenchymal component in glioblastoma.BMC Cancer20099130210.1186/1471‑2407‑9‑30219712474
    [Google Scholar]
  45. HanL. ZhangL. CCL21/CCR7 axis as a therapeutic target for autoimmune diseases.Int. Immunopharmacol.202312111043110.1016/j.intimp.2023.11043137331295
    [Google Scholar]
  46. GeraldoL.H. GarciaC. XuY. LeserF.S. GrimaldiI. de Camargo MagalhãesE.S. DejaegherJ. SolieL. PereiraC.M. CorreiaA.H. De VleeschouwerS. TavitianB. CanedoN.H.S. MathivetT. ThomasJ.L. EichmannA. LimaF.R.S. CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma.Cell. Mol. Life Sci.202380717910.1007/s00018‑023‑04788‑737314567
    [Google Scholar]
  47. ZhangH.P. WuJ. LiuZ.F. GaoJ.W. LiS.Y. SPARCL1 is a novel prognostic biomarker and correlates with tumor microenvironment in colorectal cancer.BioMed Res. Int.202220221139826810.1155/2022/139826835111844
    [Google Scholar]
  48. WangY. LiW. JinX. JiangX. GuoS. XuF. SuX. WangG. ZhaoZ. GuX. Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer.BMC Cancer202121190510.1186/s12885‑021‑08629‑334364366
    [Google Scholar]
  49. ZhangD. WangX. WangX. WangZ. MaS. ZhangC. LiS. JiaW. CPNE3 regulates the cell proliferation and apoptosis in human Glioblastoma via the activation of PI3K/AKT signaling pathway.J. Cancer202112247277728610.7150/jca.6004935003348
    [Google Scholar]
  50. ZhangX. YaoZ. XueZ. WangS. LiuX. HuY. ZhangY. WangJ. LiX. ChenA. Resibufogenin targets the ATP1A1 signaling cascade to induce G2/M phase arrest and inhibit invasion in glioma.Front. Pharmacol.20221385562610.3389/fphar.2022.85562635656311
    [Google Scholar]
  51. ZhouH. HeY. HuangY. LiR. ZhangH. XiaX. XiongH. Comprehensive analysis of prognostic value, immune implication and biological function of CPNE1 in clear cell renal cell carcinoma.Front. Cell Dev. Biol.202311115726910.3389/fcell.2023.115726937077419
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303375462250430055914
Loading
/content/journals/emiddt/10.2174/0118715303375462250430055914
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test