Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Esketamine has shown promise in mitigating tissue damage caused by ischemia-reperfusion injury, making it a potential therapeutic candidate for acute lung injury (ALI) induced by limb ischemia-reperfusion (LIR-ALI).

Objective

This study sought to explore the role and mechanism of esketamine in the LIR-ALI rat model.

Methods

The effects of esketamine on the LIR-ALI rats model were evaluated through histopathological examination, assessment of pulmonary edema, measurement of MDA and SOD levels, and analysis of inflammatory cytokine levels (IL-1β, .) in the bronchoalveolar fluid (BALF) and serum. Western blot analysis was used to assess the expressions of TLR4, NF-κB, and NLRP3. TLR4 agonist, LPS, was used to validate the role of NF-κB/NLRP3 pathway in LIR-ALI.

Results

Esketamine significantly alleviated LIR-induced ALI by reducing pulmonary edema, inflammatory cell infiltration, and oxidative stress. Elevated MDA content and suppressed SOD activity were significantly reversed by esketamine, along with inactivity of the TLR4/NF-κB/NLRP3 pathway. Esketamine treatment reduced inflammatory response in BALF and serum. TLR4 activation by LPS reversed the ameliorative effects of esketamine on LIR-ALI.

Conclusion

Esketamine protected against LIR-induced ALI by mitigating oxidative stress and suppressing the TLR4/NF-κB/NLRP3 axis. These findings highlight the potential therapeutic value of esketamine for ALI.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303393744250423100211
2025-04-29
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303393744.html?itemId=/content/journals/emiddt/10.2174/0118715303393744250423100211&mimeType=html&fmt=ahah

References

  1. ZhangM. LiuQ. MengH. DuanH. LiuX. WuJ. GaoF. WangS. TanR. YuanJ. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.2024911210.1038/s41392‑023‑01688‑x38185705
    [Google Scholar]
  2. DemirtaşH. ÖzerA. YıldırımA.K. DursunA.D. SezenŞ.C. ArslanM. Protective effects of BPC 157 on liver, kidney, and lung distant organ damage in rats with experimental lower-extremity ischemia–reperfusion injury.Medicina202561229110.3390/medicina6102029140005408
    [Google Scholar]
  3. ElimamH. GauvinJ. HuynhD.N. MénardL. Al-HawatM.L. HarbD. LubellW.D. CarpentierA.C. OngH. MarleauS. Targeting CD36 with EP 80317 reduces remote inflammatory response to hind limb ischemia-reperfusion in mice.J. Biochem. Mol. Toxicol.20243812e7005710.1002/jbt.7005739552437
    [Google Scholar]
  4. HuJ-H. ZhongZ-Z. ShiH-J. WangJ. ChenS. ShanX-S. LiuH-Y. LiuH. MengL. JiF-H. PengK. Esketamine vs. placebo combined with erector spinae plane block vs. intercostal nerve block on quality of recovery following thoracoscopic lung resection: A randomized controlled factorial trial.Int. J. Surg.2025111167768510.1097/JS9.0000000000002060
    [Google Scholar]
  5. YinX. KeY. LiangY. ZhangS. ChenZ. YuL. JiangM. LiuQ. GuX. An immune-enhancing injectable hydrogel loaded with esketamine and DDP promotes painless immunochemotherapy to inhibit breast cancer growth.Adv. Healthc. Mater.20241329240137310.1002/adhm.20240137339118566
    [Google Scholar]
  6. CaiS.Y. LiuA. XieW.X. ZhangX.Q. SuB. MaoY. WengD.G. ChenZ.Y. Esketamine mitigates mechanical ventilation-induced lung injury in chronic obstructive pulmonary disease rats via inhibition of the MAPK/NF-κB signaling pathway and reduction of oxidative stress.Int. Immunopharmacol.202413911272510.1016/j.intimp.2024.11272539059100
    [Google Scholar]
  7. LiangL. LiY. JiaoY. ZhangC. ShaoM. JiangH. WuZ. ChenH. GuoJ. JiaH. ZhaoT. Maprotiline prompts an antitumour effect by inhibiting PD-L1 expression in mice with melanoma.Curr. Mol. Pharmacol.2023171e1876142925956210.2174/011876142925956223092505574937982288
    [Google Scholar]
  8. WenH. LuD. ChenH. ZhuY. XieQ. ZhangZ. WuZ. Tetrahydropalmatine induces the polarization of M1 macrophages to M2 to relieve limb ischemia-reperfusion-induced lung injury via inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.Drug Dev. Res.20228361362137210.1002/ddr.2196535976115
    [Google Scholar]
  9. ZouR. WangM.H. ChenY. FanX. YangB. DuJ. WangX.B. LiuK.X. ZhouJ. Hydrogen-rich saline attenuates acute lung injury induced by limb ischemia/reperfusion via down-regulating chemerin and NLRP3 in rats.Shock201952113414110.1097/SHK.000000000000119429847499
    [Google Scholar]
  10. DuanW.L. WangX.J. MaY.P. ShengZ.M. DongH. ZhangL.Y. ZhangB.G. HeM.T. Therapeutic strategies targeting the NLRP3-mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review).Mol. Med. Rep.20242934610.3892/mmr.2024.1317038275110
    [Google Scholar]
  11. ZhongG. ShiY. KongL. LvK. ZhangL. YangM. TianN. YangN. Inhibiting oxidative stress and inflammation in acute lung injury using hydrogen: A preclinical systematic review and meta-analysis.GTM2023230379
    [Google Scholar]
  12. MaX. YanW. HeN. Lidocaine attenuates hypoxia/reoxygenation-induced inflammation, apoptosis and ferroptosis in lung epithelial cells by regulating the p38 MAPK pathway.Mol. Med. Rep.202225515010.3892/mmr.2022.1266635244190
    [Google Scholar]
  13. GaoY. LiL. ZhaoF. ChengY. JinM. XueF.S. Esketamine at a clinical dose attenuates cerebral ischemia/reperfusion injury by inhibiting AKT signaling pathway to Facilitate Microglia M2 polarization and autophagy.Drug Des. Devel. Ther.20251936938710.2147/DDDT.S50417939867864
    [Google Scholar]
  14. XuS.Y. BianR.L. ChenX. Methodology of Pharmacological Experiments.BeijingPeople’s Medical Publishing House2003202203
    [Google Scholar]
  15. JiaZ. WangJ. LiX. YangQ. HanJ. Repair effect of siRNA double silencing of the novel mechanically sensitive ion channels piezo1 and TRPV4 on an osteoarthritis rat model.Curr. Mol. Pharmacol.202417e1876142931774510.2174/011876142931774524101711402039660528
    [Google Scholar]
  16. Lifei-Luo ZhangJ. LiX. ZhuY. WangY. LiuD. Sericic acid ameliorates DSS-induced ulcerative colitis in mice by modulating the NF-κB and Nrf2 pathways.Curr. Mol. Pharmacol.202316775977036173058
    [Google Scholar]
  17. WangL. DingY. BaiY. ShiJ. LiJ. WangX. The activation of SIRT3 by dexmedetomidine mitigates limb ischemia-reperfusion–induced lung injury.Ann. Transl. Med.202210631910.21037/atm‑22‑71135434046
    [Google Scholar]
  18. XuJ. XuJ. ShiT. ZhangY. ChenF. YangC. GuoX. LiuG. ShaoD. LeongK.W. NieG. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox balance, immune responses, and the gut microbiome.Adv. Mater.2023353220789010.1002/adma.20220789036341495
    [Google Scholar]
  19. CaoP. YangJ. XiaL. ZhangZ. WuZ. HaoY. LiuP. WangC. LiC. YangJ. LaiJ. LiX. DengM. WangS. Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato.Mol. Plant202417457959710.1016/j.molp.2024.02.00338327054
    [Google Scholar]
  20. HepokurC. MisirS. CicekM. HabtemariamS. Sharifi-RadJ. Protective effect of Salvia cadmica on fibroblast cells from t-bhp-induced oxidative damage.Curr. Pharm. Anal.202420317818710.2174/0115734129293569240327093703
    [Google Scholar]
  21. LiJ WangQ ZhangX Scutellarin alleviates complete Freund’s adjuvant-induced rheumatoid arthritis in mice by regulating the Keap1/Nrf2/HO-1 pathway.Biocell20234761307131610.32604/biocell.2023.028714
    [Google Scholar]
  22. ZhangL. YangH. LiuJ. WangK. CaiX. XiaoW. WangL. WangM. ZhangC. ZhangJ. Metabolomics-based approach to analyze the therapeutic targets and metabolites of a synovitis ointment for knee osteoarthritis.Curr. Pharm. Anal.202319322223410.2174/1573412919666221223152915
    [Google Scholar]
  23. NiJ. ShangY. WangW.D. WangC. WangA.M. LiG.J. ChenS.Z. FASN inhibitors enhance bestatin-related tumor cell apoptosis through upregulating PEPT1.Curr. Mol. Pharmacol.202316777178636411574
    [Google Scholar]
  24. XuX FangY ZhangB TengS WuX ZhangJ GuX MaM Bushen Yizhi formula regulates the IRE1α pathway to alleviate endoplasmic reticulum stress in an Alzheimer’s disease rat model.Biocell20234771595160910.32604/biocell.2023.027697
    [Google Scholar]
  25. LaubachV.E. SharmaA.K. Mechanisms of lung ischemia-reperfusion injury.Curr. Opin. Organ Transplant.201621324625210.1097/MOT.000000000000030426945320
    [Google Scholar]
  26. NakazatoP.C.G. VictorinoJ.P. FinaC.F. MendesK.D.S. GomesM.C.J. EvoraP.R.B. D’AlbuquerqueL.A.C. Castro-e-SilvaO. Liver ischemia and reperfusion injury. Pathophysiology and new horizons in preconditioning and therapy.Acta Cir. Bras.201833872373510.1590/s0102‑86502018008000000830208134
    [Google Scholar]
  27. XiaW. LiY. WuM. JinQ. WangQ. LiS. HuangS. ZhangA. ZhangY. JiaZ. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation.Cell Death Dis.202112213910.1038/s41419‑021‑03431‑233542198
    [Google Scholar]
  28. GuW. ZengQ. WangX. JasemH. MaL. Acute lung injury and the NLRP3 inflammasome.J. Inflamm. Res.2024173801381310.2147/JIR.S46483838887753
    [Google Scholar]
  29. GuL. ZhuJ. NieQ. XieB. XueS. ZhangA. LiQ. ZhangZ. LiS. LiY. ShiQ. ShiW. ZhaoL. LiuS. ShiX. NLRP3 promotes inflammatory signaling and IL-1β cleavage in acute lung injury caused by cell wall extract of Lactobacillus casei.Commun. Biol.2025812010.1038/s42003‑025‑07462‑939774843
    [Google Scholar]
  30. ChuS.J. TangS.E. PaoH.P. WuS.Y. LiaoW.I. Protease-activated receptor-1 antagonist protects against lung ischemia/reperfusion injury.Front. Pharmacol.20211275250710.3389/fphar.2021.75250734658893
    [Google Scholar]
  31. G BardalloR. Panisello-RosellóA. Sanchez-NunoS. AlvaN. Roselló-CatafauJ. CarbonellT. Nrf2 and oxidative stress in liver ischemia/reperfusion injury.FEBS J.2022289185463547910.1111/febs.1633634967991
    [Google Scholar]
  32. WangY. ZhangX. TianJ. LiuG. LiX. ShenD. Sevoflurane alleviates LPS-induced acute lung injury via the microRNA-27a-3p/TLR4/MyD88/NF-κB signaling pathway.Int. J. Mol. Med.201944247949010.3892/ijmm.2019.421731173183
    [Google Scholar]
  33. WangL. MaH. XueY. ShiH. MaT. CuiX. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways.Exp. Ther. Med.20181521225123229403554
    [Google Scholar]
  34. ZhouL. LiuY. LuX. LiC. The effect of esketamine on postoperative pain and inflammatory stress after thoracoscopic lobectomy.Chongqing Medicine20235229242929
    [Google Scholar]
  35. KrystalJ.H. KayeA.P. JeffersonS. GirgentiM.J. WilkinsonS.T. SanacoraG. EsterlisI. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments.Proc. Natl. Acad. Sci. USA202312049e230577212010.1073/pnas.230577212038011560
    [Google Scholar]
  36. LiN. LeeB. LiuR.J. BanasrM. DwyerJ.M. IwataM. LiX.Y. AghajanianG. DumanR.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.Science2010329599495996410.1126/science.119028720724638
    [Google Scholar]
  37. YanL.S. CuiS. ChengB.C.Y. YinX.B. WangY.W. QiuX.Y. NimaC.R. ZhangY. ZhangS.F. Sichen formula ameliorates lipopolysaccharide-induced acute lung injury via blocking the TLR4 signaling pathways.Drug Des. Devel. Ther.20231729731210.2147/DDDT.S37298136756190
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303393744250423100211
Loading
/content/journals/emiddt/10.2174/0118715303393744250423100211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test